Parquet (skfr 8.3)

Post puzzles for others to solve here.

Parquet (skfr 8.3)

Postby jovi_al01 » Sun Jan 16, 2022 9:27 pm

Code: Select all
..5.8.7.....1....43....2...2..6..8...5..7..9...6..8..3...3....21....4.....7.6.9..


looking forward to your solutions :)
User avatar
jovi_al01
 
Posts: 102
Joined: 26 July 2021

Re: Parquet (skfr 8.3)

Postby denis_berthier » Mon Jan 17, 2022 7:35 am

.
Code: Select all
     +-------+-------+-------+
     ! . . 5 ! . 8 . ! 7 . . !
     ! . . . ! 1 . . ! . . 4 !
     ! 3 . . ! . . 2 ! . . . !
     +-------+-------+-------+
     ! 2 . . ! 6 . . ! 8 . . !
     ! . 5 . ! . 7 . ! . 9 . !
     ! . . 6 ! . . 8 ! . . 3 !
     +-------+-------+-------+
     ! . . . ! 3 . . ! . . 2 !
     ! 1 . . ! . . 4 ! . . . !
     ! . . 7 ! . 6 . ! 9 . . !
     +-------+-------+-------+

SER = 8.3


Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 469    12469  5      ! 49     8      369    ! 7      1236   169    !
   ! 6789   26789  289    ! 1      359    35679  ! 2356   23568  4      !
   ! 3      146789 1489   ! 4579   459    2      ! 156    1568   15689  !
   +----------------------+----------------------+----------------------+
   ! 2      13479  1349   ! 6      13459  1359   ! 8      1457   157    !
   ! 48     5      1348   ! 24     7      13     ! 1246   9      16     !
   ! 479    1479   6      ! 2459   12459  8      ! 1245   12457  3      !
   +----------------------+----------------------+----------------------+
   ! 45689  4689   489    ! 3      159    1579   ! 1456   145678 2      !
   ! 1      23689  2389   ! 25789  259    4      ! 356    35678  5678   !
   ! 458    2348   7      ! 258    6      15     ! 9      13458  158    !
   +----------------------+----------------------+----------------------+
222 candidates.


Interesting puzzle!

First thing to notice is the very high number of candidates (222) after Singles and whips[1] have been applied. This is often a sign that the resolution paths will be longer.
Jovi_al01, did you select this puzzle for this reason?


The puzzle has a solution in W5
Simplest-first solution in W5: Show
finned-swordfish-in-rows: n2{r9 r1 r5}{c4 c2 c8} ==> r6c8≠2
whip[1]: c8n2{r2 .} ==> r2c7≠2
finned-swordfish-in-columns: n3{c7 c5 c3}{r8 r2 r4} ==> r4c2≠3
whip[1]: c2n3{r9 .} ==> r8c3≠3
biv-chain[3]: c6n6{r2 r1} - r1n3{c6 c8} - c8n2{r1 r2} ==> r2c8≠6
biv-chain[3]: c4n8{r8 r9} - r9n2{c4 c2} - c2n3{r9 r8} ==> r8c2≠8
t-whip[4]: r5c4{n4 n2} - r9n2{c4 c2} - r9n3{c2 c8} - r9n4{c8 .} ==> r5c1≠4
naked-single ==> r5c1=8
t-whip[4]: r5c6{n1 n3} - r1n3{c6 c8} - r1n2{c8 c2} - r1n1{c2 .} ==> r5c9≠1
naked-single ==> r5c9=6
biv-chain[5]: r1c4{n9 n4} - r5c4{n4 n2} - r9n2{c4 c2} - r9n3{c2 c8} - r1n3{c8 c6} ==> r1c6≠9
biv-chain[5]: r5c4{n4 n2} - r9n2{c4 c2} - c2n3{r9 r8} - c7n3{r8 r2} - c5n3{r2 r4} ==> r4c5≠4
z-chain[4]: r4n4{c3 c8} - r9n4{c8 c1} - b1n4{r1c1 r3c3} - c5n4{r3 .} ==> r6c2≠4
z-chain[4]: r4n4{c3 c8} - r9n4{c8 c2} - c3n4{r7 r3} - c5n4{r3 .} ==> r6c1≠4
biv-chain[5]: r5c4{n4 n2} - r9n2{c4 c2} - r9n3{c2 c8} - r1n3{c8 c6} - r5n3{c6 c3} ==> r5c3≠4
whip[1]: b4n4{r4c3 .} ==> r4c8≠4
naked-pairs-in-a-row: r5{c3 c6}{n1 n3} ==> r5c7≠1
z-chain[4]: r5n1{c3 c6} - c5n1{r4 r7} - c7n1{r7 r3} - c3n1{r3 .} ==> r6c2≠1
naked-pairs-in-a-block: b4{r6c1 r6c2}{n7 n9} ==> r4c3≠9, r4c2≠9, r4c2≠7
whip[1]: r4n7{c9 .} ==> r6c8≠7
whip[1]: r4n9{c6 .} ==> r6c4≠9, r6c5≠9
biv-chain[4]: r4c2{n4 n1} - r5n1{c3 c6} - r9c6{n1 n5} - r9c1{n5 n4} ==> r7c2≠4, r9c2≠4
z-chain[4]: r6n1{c8 c5} - c5n4{r6 r3} - r1c4{n4 n9} - r1c9{n9 .} ==> r4c9≠1
biv-chain[5]: r5c6{n1 n3} - r1n3{c6 c8} - c8n2{r1 r2} - c3n2{r2 r8} - c5n2{r8 r6} ==> r6c5≠1
whip[1]: r6n1{c8 .} ==> r4c8≠1
naked-pairs-in-a-block: b6{r4c8 r4c9}{n5 n7} ==> r6c8≠5, r6c7≠5
whip[1]: r6n5{c5 .} ==> r4c5≠5, r4c6≠5
biv-chain[4]: r6c8{n1 n4} - c5n4{r6 r3} - r1c4{n4 n9} - r1c9{n9 n1} ==> r1c8≠1, r3c8≠1
biv-chain[5]: r9c6{n5 n1} - r5c6{n1 n3} - r1n3{c6 c8} - r1n2{c8 c2} - r9n2{c2 c4} ==> r9c4≠5
z-chain[5]: r9c4{n8 n2} - r5c4{n2 n4} - r1c4{n4 n9} - c9n9{r1 r3} - c9n8{r3 .} ==> r9c8≠8
z-chain[5]: r1c6{n6 n3} - r5c6{n3 n1} - r9c6{n1 n5} - c1n5{r9 r7} - c1n6{r7 .} ==> r1c2≠6
t-whip[5]: c1n5{r7 r9} - r9c6{n5 n1} - r9c9{n1 n8} - c4n8{r9 r8} - b8n7{r8c4 .} ==> r7c6≠5
t-whip[4]: c6n6{r1 r2} - c6n5{r2 r9} - c1n5{r9 r7} - c1n6{r7 .} ==> r1c8≠6
t-whip[5]: c9n9{r3 r1} - r1c4{n9 n4} - r1c1{n4 n6} - c6n6{r1 r2} - b2n7{r2c6 .} ==> r3c4≠9
t-whip[4]: c4n8{r9 r8} - c4n9{r8 r1} - c9n9{r1 r3} - c9n8{r3 .} ==> r9c2≠8
whip[5]: c1n5{r7 r9} - r9n4{c1 c8} - r6c8{n4 n1} - b9n1{r9c8 r9c9} - r9c6{n1 .} ==> r7c7≠5
whip[5]: c9n9{r3 r1} - r1n1{c9 c2} - r4c2{n1 n4} - b1n4{r3c2 r1c1} - r1c4{n4 .} ==> r3c3≠9
whip[5]: r1c4{n9 n4} - r5c4{n4 n2} - r9n2{c4 c2} - r1c2{n2 n1} - r1c9{n1 .} ==> r1c1≠9
biv-chain[3]: r1c4{n9 n4} - r1c1{n4 n6} - b2n6{r1c6 r2c6} ==> r2c6≠9
biv-chain[4]: c6n5{r2 r9} - r9c1{n5 n4} - r1c1{n4 n6} - r1c6{n6 n3} ==> r2c6≠3
biv-chain[4]: c6n5{r2 r9} - r9c1{n5 n4} - r1c1{n4 n6} - b2n6{r1c6 r2c6} ==> r2c6≠7
singles ==> r3c4=7, r7c6=7,r4c6=9
biv-chain[4]: c6n5{r9 r2} - c6n6{r2 r1} - r1c1{n6 n4} - r9n4{c1 c8} ==> r9c8≠5
biv-chain[4]: c6n5{r9 r2} - c6n6{r2 r1} - r1c1{n6 n4} - r9c1{n4 n5} ==> r9c9≠5
biv-chain[3]: r9c6{n5 n1} - r9c9{n1 n8} - b8n8{r9c4 r8c4} ==> r8c4≠5
hidden-single-in-a-column ==> r6c4=5
biv-chain[4]: c4n9{r8 r1} - r1c9{n9 n1} - r9c9{n1 n8} - r9c4{n8 n2} ==> r8c4≠2
biv-chain[4]: c4n9{r1 r8} - c4n8{r8 r9} - r9c9{n8 n1} - r1n1{c9 c2} ==> r1c2≠9
biv-chain[4]: r4c2{n4 n1} - r1n1{c2 c9} - r1n9{c9 c4} - b2n4{r1c4 r3c5} ==> r3c2≠4
biv-chain[4]: r6c8{n1 n4} - r9n4{c8 c1} - r9n5{c1 c6} - b8n1{r9c6 r7c5} ==> r7c8≠1
biv-chain[4]: r9c9{n1 n8} - b8n8{r9c4 r8c4} - c4n9{r8 r1} - r1c9{n9 n1} ==> r3c9≠1
biv-chain[4]: r1c1{n4 n6} - b2n6{r1c6 r2c6} - c6n5{r2 r9} - r9c1{n5 n4} ==> r7c1≠4
z-chain[4]: r8c4{n8 n9} - r8c3{n9 n2} - b8n2{r8c5 r9c4} - r9n8{c4 .} ==> r8c9≠8, r8c8≠8
naked-pairs-in-a-column: c9{r4 r8}{n5 n7} ==> r3c9≠5
z-chain[4]: r2c6{n6 n5} - r2c7{n5 n3} - b2n3{r2c5 r1c6} - r1n6{c6 .} ==> r2c2≠6, r2c1≠6
naked-pairs-in-a-column: c1{r2 r6}{n7 n9} ==> r7c1≠9
z-chain[5]: r6c8{n4 n1} - r9c8{n1 n3} - r9c2{n3 n2} - r9c4{n2 n8} - b9n8{r9c9 .} ==> r7c8≠4
hidden-pairs-in-a-column: c8{n1 n4}{r6 r9} ==> r9c8≠3
singles ==> r9c2=3, r9c4=2, r5c4=4,r1c4=9, r1c9=1, r9c9=8, r3c9=9, r8c4=8, r5c7=2, r6c5=2, r3c5=4
whip[1]: r3n5{c8 .} ==> r2c7≠5, r2c8≠5
naked-pairs-in-a-row: r7{c1 c8}{n5 n6} ==> r7c7≠6, r7c5≠5, r7c2≠6
finned-x-wing-in-columns: n6{c2 c8}{r3 r8} ==> r8c7≠6
whip[1]: b9n6{r8c8 .} ==> r3c8≠6
naked-triplets-in-a-row: r2{c5 c6 c7}{n3 n5 n6} ==> r2c8≠3
biv-chain[3]: c5n5{r8 r2} - r2n3{c5 c7} - r8c7{n3 n5} ==> r8c8≠5, r8c9≠5
singles ==> r8c9=7, r4c9=5, r4c8=7
biv-chain[3]: r1n2{c2 c8} - c8n3{r1 r8} - r8n6{c8 c2} ==> r8c2≠2
hidden-single-in-a-block ==> r8c3=2
biv-chain[3]: b1n6{r3c2 r1c1} - b1n4{r1c1 r1c2} - r4c2{n4 n1} ==> r3c2≠1
stte

As expected, it has many non-W1 steps (53). (This number can probably be reduced, even in W5.)


For people who prefer using only reversible chains, there is also a solution in Z6 (it requires slightly longer chains than when using whips)
simplest-first solution in Z6: Show
finned-swordfish-in-rows: n2{r9 r1 r5}{c4 c2 c8} ==> r6c8≠2
whip[1]: c8n2{r2 .} ==> r2c7≠2
finned-swordfish-in-columns: n3{c7 c5 c3}{r8 r2 r4} ==> r4c2≠3
whip[1]: c2n3{r9 .} ==> r8c3≠3
biv-chain[3]: c6n6{r2 r1} - r1n3{c6 c8} - c8n2{r1 r2} ==> r2c8≠6
biv-chain[3]: c4n8{r8 r9} - r9n2{c4 c2} - c2n3{r9 r8} ==> r8c2≠8
biv-chain[5]: r1c4{n9 n4} - r5c4{n4 n2} - r9n2{c4 c2} - r9n3{c2 c8} - r1n3{c8 c6} ==> r1c6≠9
biv-chain[3]: r1c6{n6 n3} - r5c6{n3 n1} - r5c9{n1 n6} ==> r1c9≠6
biv-chain[5]: r1c9{n1 n9} - r1c4{n9 n4} - r5c4{n4 n2} - r9n2{c4 c2} - r1n2{c2 c8} ==> r1c8≠1
biv-chain[4]: r1n1{c9 c2} - r1n2{c2 c8} - r1n3{c8 c6} - r5c6{n3 n1} ==> r5c9≠1
naked-single ==> r5c9=6
biv-chain[5]: r5c4{n4 n2} - r9n2{c4 c2} - c2n3{r9 r8} - c7n3{r8 r2} - c5n3{r2 r4} ==> r4c5≠4
z-chain[4]: r4n4{c3 c8} - r9n4{c8 c1} - b1n4{r1c1 r3c3} - c5n4{r3 .} ==> r6c2≠4
z-chain[4]: r4n4{c3 c8} - r9n4{c8 c2} - c3n4{r7 r3} - c5n4{r3 .} ==> r6c1≠4
z-chain[4]: r4n4{c3 c8} - r9n4{c8 c2} - r9n2{c2 c4} - r5c4{n2 .} ==> r5c1≠4
naked-single ==> r5c1=8
biv-chain[5]: r9c1{n4 n5} - r9c6{n5 n1} - r5c6{n1 n3} - r1n3{c6 c8} - r9n3{c8 c2} ==> r9c2≠4
biv-chain[5]: r5c4{n4 n2} - r9n2{c4 c2} - r9n3{c2 c8} - r1n3{c8 c6} - r5n3{c6 c3} ==> r5c3≠4
whip[1]: b4n4{r4c3 .} ==> r4c8≠4
naked-pairs-in-a-row: r5{c3 c6}{n1 n3} ==> r5c7≠1
z-chain[4]: r5n1{c3 c6} - c5n1{r4 r7} - c7n1{r7 r3} - c3n1{r3 .} ==> r6c2≠1
naked-pairs-in-a-block: b4{r6c1 r6c2}{n7 n9} ==> r4c3≠9, r4c2≠9, r4c2≠7
whip[1]: r4n7{c9 .} ==> r6c8≠7
whip[1]: r4n9{c6 .} ==> r6c4≠9, r6c5≠9
biv-chain[4]: r4c2{n4 n1} - r5n1{c3 c6} - r9c6{n1 n5} - r9c1{n5 n4} ==> r7c2≠4
z-chain[4]: r6n1{c8 c5} - c5n4{r6 r3} - r1c4{n4 n9} - r1c9{n9 .} ==> r4c9≠1
biv-chain[5]: r5c6{n1 n3} - r1n3{c6 c8} - c8n2{r1 r2} - c3n2{r2 r8} - c5n2{r8 r6} ==> r6c5≠1
whip[1]: r6n1{c8 .} ==> r4c8≠1
naked-pairs-in-a-block: b6{r4c8 r4c9}{n5 n7} ==> r6c8≠5, r6c7≠5
whip[1]: r6n5{c5 .} ==> r4c5≠5, r4c6≠5
biv-chain[4]: r6c8{n1 n4} - c5n4{r6 r3} - r1c4{n4 n9} - r1c9{n9 n1} ==> r3c8≠1
biv-chain[5]: r9c6{n5 n1} - r5c6{n1 n3} - r1n3{c6 c8} - r1n2{c8 c2} - r9n2{c2 c4} ==> r9c4≠5
z-chain[5]: r9c4{n8 n2} - r5c4{n2 n4} - r1c4{n4 n9} - c9n9{r1 r3} - c9n8{r3 .} ==> r9c8≠8
z-chain[5]: r1c6{n6 n3} - r5c6{n3 n1} - r9c6{n1 n5} - c1n5{r9 r7} - c1n6{r7 .} ==> r1c2≠6
biv-chain[6]: r1c4{n9 n4} - r5c4{n4 n2} - r9n2{c4 c2} - r9n3{c2 c8} - r1n3{c8 c6} - b2n6{r1c6 r2c6} ==> r2c6≠9
biv-chain[6]: c6n9{r4 r7} - b8n7{r7c6 r8c4} - c4n8{r8 r9} - r9n2{c4 c2} - r1n2{c2 c8} - r1n3{c8 c6} ==> r4c6≠3
biv-chain[6]: c9n9{r3 r1} - r1n1{c9 c2} - r1n2{c2 c8} - r1n3{c8 c6} - b2n6{r1c6 r2c6} - b2n7{r2c6 r3c4} ==> r3c4≠9
z-chain[5]: r7n8{c3 c8} - c9n8{r8 r3} - c9n9{r3 r1} - c4n9{r1 r8} - c4n8{r8 .} ==> r9c2≠8
biv-chain[6]: r9n8{c9 c4} - r9n2{c4 c2} - r1n2{c2 c8} - r1n3{c8 c6} - r5c6{n3 n1} - r9c6{n1 n5} ==> r9c9≠5
biv-chain[3]: r9c6{n5 n1} - r9c9{n1 n8} - b8n8{r9c4 r8c4} ==> r8c4≠5
biv-chain[4]: c4n9{r8 r1} - r1c9{n9 n1} - r9c9{n1 n8} - r9c4{n8 n2} ==> r8c4≠2
biv-chain[4]: c4n9{r8 r1} - r1c9{n9 n1} - r9c9{n1 n8} - b8n8{r9c4 r8c4} ==> r8c4≠7
singles ==> r7c6=7, r3c4=7, r6c4=5, r4c6=9
biv-chain[4]: c4n9{r1 r8} - c4n8{r8 r9} - r9c9{n8 n1} - r1n1{c9 c2} ==> r1c2≠9
biv-chain[4]: c4n9{r1 r8} - c4n8{r8 r9} - r9c9{n8 n1} - r1c9{n1 n9} ==> r1c1≠9
biv-chain[4]: r4c2{n4 n1} - r1n1{c2 c9} - r1n9{c9 c4} - b2n4{r1c4 r3c5} ==> r3c2≠4
biv-chain[3]: r3n4{c3 c5} - r1c4{n4 n9} - b3n9{r1c9 r3c9} ==> r3c3≠9
biv-chain[4]: c6n5{r2 r9} - r9c1{n5 n4} - r1c1{n4 n6} - r1c6{n6 n3} ==> r2c6≠3
biv-chain[4]: c6n5{r9 r2} - c6n6{r2 r1} - r1c1{n6 n4} - r9n4{c1 c8} ==> r9c8≠5
biv-chain[4]: r6c8{n1 n4} - r9n4{c8 c1} - r9n5{c1 c6} - b8n1{r9c6 r7c5} ==> r7c8≠1
biv-chain[3]: r7n1{c7 c5} - r9c6{n1 n5} - b7n5{r9c1 r7c1} ==> r7c7≠5
biv-chain[4]: r1c1{n6 n4} - r9c1{n4 n5} - c6n5{r9 r2} - b2n6{r2c6 r1c6} ==> r1c8≠6
biv-chain[4]: r1c1{n4 n6} - b2n6{r1c6 r2c6} - c6n5{r2 r9} - r9c1{n5 n4} ==> r7c1≠4
biv-chain[4]: r9c9{n1 n8} - b8n8{r9c4 r8c4} - c4n9{r8 r1} - r1c9{n9 n1} ==> r3c9≠1
z-chain[4]: r2c6{n6 n5} - r2c7{n5 n3} - b2n3{r2c5 r1c6} - r1n6{c6 .} ==> r2c1≠6, r2c2≠6
naked-pairs-in-a-column: c1{r2 r6}{n7 n9} ==> r7c1≠9
z-chain[4]: r8c4{n8 n9} - r8c3{n9 n2} - b8n2{r8c5 r9c4} - r9n8{c4 .} ==> r8c9≠8, r8c8≠8
naked-pairs-in-a-column: c9{r4 r8}{n5 n7} ==> r3c9≠5
z-chain[5]: r6c8{n4 n1} - r9c8{n1 n3} - r9c2{n3 n2} - r9c4{n2 n8} - b9n8{r9c9 .} ==> r7c8≠4
hidden-pairs-in-a-column: c8{n1 n4}{r6 r9} ==> r9c8≠3
singles ==> r9c2=3, r9c4=2, r5c4=4, r1c4=9, r1c9=1, r9c9=8, r3c9=9, r8c4=8, r5c7=2, r6c5=2, r3c5=4
whip[1]: r3n5{c8 .} ==> r2c7≠5, r2c8≠5
naked-pairs-in-a-row: r7{c1 c8}{n5 n6} ==> r7c7≠6, r7c5≠5, r7c2≠6
finned-x-wing-in-columns: n6{c2 c8}{r3 r8} ==> r8c7≠6
whip[1]: b9n6{r8c8 .} ==> r3c8≠6
naked-triplets-in-a-row: r2{c5 c6 c7}{n3 n5 n6} ==> r2c8≠3
biv-chain[3]: c5n5{r8 r2} - r2n3{c5 c7} - r8c7{n3 n5} ==> r8c8≠5, r8c9≠5
singles ==> r8c9=7, r4c9=5, r4c8=7
biv-chain[3]: r1n2{c2 c8} - c8n3{r1 r8} - r8n6{c8 c2} ==> r8c2≠2
hidden-single-in-a-block ==> r8c3=2
biv-chain[3]: b1n6{r3c2 r1c1} - b1n4{r1c1 r1c2} - r4c2{n4 n1} ==> r3c2≠1
stte

This makes 55 non-W1 steps. (This number can probably be reduced, even in Z6.)


There are no W1-anti-backdoors and no W1-anti-backdoor-pairs. Therefore, there can't be any 1-step or 2-step solution based on whips, braids, g-whips or g-braids of any length.


Here is now a 1-step solution using the nukes:
Code: Select all
FORCING[3]-T&E(BRT) applied to trivalue candidates n4r1c1, n4r1c2 and n4r1c4 :
===> 7 values decided in the three cases: n8r5c1 n5r6c4 n7r3c4 n6r5c9 n9r4c6 n7r7c6 n6r8c2
===> 101 candidates eliminated in the three cases: n9r1c1 n6r1c2 n9r1c2 n9r1c6 n1r1c8 n6r1c8 n6r1c9 n6r2c1 n8r2c1 n9r2c1 n6r2c2 n9r2c2 n8r2c3 n3r2c6 n7r2c6 n9r2c6 n2r2c7 n5r2c7 n3r2c8 n6r2c8 n4r3c2 n6r3c2 n7r3c2 n9r3c3 n4r3c4 n5r3c4 n9r3c4 n9r3c5 n1r3c8 n8r3c8 n1r3c9 n5r3c9 n6r3c9 n3r4c2 n7r4c2 n9r4c2 n9r4c3 n4r4c5 n5r4c5 n9r4c5 n1r4c6 n3r4c6 n5r4c6 n1r4c8 n4r4c8 n1r4c9 n4r5c1 n4r5c3 n8r5c3 n1r5c7 n6r5c7 n1r5c9 n4r6c1 n1r6c2 n4r6c2 n2r6c4 n4r6c4 n9r6c4 n1r6c5 n5r6c5 n9r6c5 n5r6c7 n2r6c8 n5r6c8 n7r6c8 n4r7c1 n6r7c1 n8r7c1 n4r7c2 n6r7c2 n9r7c5 n1r7c6 n5r7c6 n9r7c6 n5r7c7 n1r7c8 n4r7c8 n5r7c8 n7r7c8 n2r8c2 n3r8c2 n8r8c2 n9r8c2 n3r8c3 n9r8c3 n2r8c4 n5r8c4 n7r8c4 n5r8c5 n6r8c7 n6r8c8 n8r8c8 n6r8c9 n8r8c9 n8r9c1 n4r9c2 n8r9c2 n5r9c4 n5r9c8 n8r9c8 n5r9c9
stte

Remember that FORCING[3]-T&E is the lazy version of what some call skyscrapers.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Parquet (skfr 8.3)

Postby yzfwsf » Mon Jan 17, 2022 8:41 am

two steps
Code: Select all
Dynamic Contradiction Chain: If r9c2<>3 Then r5c7=4 And r5c7<>4 simultaneously,so r9c2=3


Hidden Text: Show
Chain 11:r9c2<>3 → r9c8=3
Chain 10:r5c6<>3 → r5c6=1
Chain 9:r5c6=1 → r9c6<>1
Chain 8:r9c8=3 → r9c8<>1
Chain 7:r9c8=3 → r1c8<>3 → r1c6=3 → r5c6<>3
Chain 6:r5c6<>3 → r5c3=3
Chain 5:(r9c8<>1+r9c6<>1) → r9c9=1 → r1c9<>1
Chain 4:r5c6=1 → r5c9<>1 → r5c9=6 → r1c9<>6
Chain 3:(r1c9<>6+r1c9<>1) → r1c9=9 → r1c4<>9 → r1c4=4 → r5c4<>4
Chain 2:r5c3=3 → r5c3<>8 → r5c1=8 → r5c1<>4
Chain 1:r5c3=3 → r5c3<>4
Chain 0:(r5c3<>4+r5c1<>4+r5c4<>4) → r5c7=4
Chain 24:r5c6<>3 → r5c3=3 → r4c2<>3
Chain 23:r9c2<>3
Chain 22:r9c2<>3 → r9c8=3
Chain 21:r9c8=3 → r1c8<>3 → r1c6=3 → r5c6<>3
Chain 20:r9c6<>1 → r9c6=5 → r9c1<>5 → r7c1=5
Chain 19:r5c6<>3 → r5c6=1 → r9c6<>1
Chain 18:r9c8=3 → r9c8<>1
Chain 17:r7c1=5 → r7c1<>6
Chain 16:(r9c2<>3+r4c2<>3) → r8c2=3 → r8c2<>6
Chain 15:(r8c2<>6+r7c1<>6) → r7c2=6 → r7c7<>6
Chain 14:(r9c8<>1+r9c6<>1) → r9c9=1 → r7c7<>1
Chain 13:r7c1=5 → r7c7<>5
Chain 12:(r7c7<>5+r7c7<>1+r7c7<>6) → r7c7=4 → r5c7<>4

Single and Locked Candidates
Code: Select all
 
AIC Type 1: (1=3)r5c6 - r1c6 = (3-2)r1c8 = (2-8)r2c8 = r3c8 - (8=1)r3c3 => r5c3<>1
stte
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Parquet (skfr 8.3)

Postby DEFISE » Mon Jan 17, 2022 11:51 am

Symmetry / central cell
with the following matches: 1-4 , 2-3 , 5-9 , 6-8 , 7-7

No initial basics.
if 1r9c6 is true, then: 3r5c6 and 3r1c8 too.
But 3r1c8 => 2r9c2 by symmetry.
So number 2 is impossible in row 1.
=> -1r9c6
Singles : 5r9c6, 5r7c1
=> by symmetry: singles: 9r1c4, 9r3c9

Box/Line: 4r1b1 => -4r3c2 -4r3c3
Box/Line: 1r9b9 => -1r7c7 -1r7c8
Box/Line: 6c1b1 => -6r1c2 -6r2c2 -6r3c2
Box/Line: 6r3b3 => -6r1c8 -6r1c9 -6r2c7 -6r2c8
STTE
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Parquet (skfr 8.3)

Postby eleven » Mon Jan 17, 2022 2:09 pm

Code: Select all
+-------------------------+-------------------------+-------------------------+
| 469    a12469   5       | 49      8       369     | 7      b1236    169     |
| 6789    26789   289     | 1       359     35679   | 2356    23568   4       |
| 3       146789  1489    | 4579    459     2       | 156     1568    15689   |
+-------------------------+-------------------------+-------------------------+
| 2       13479   1349    | 6       13459   1359    | 8       1457    157     |
| 48      5       1348    | 24      7       13      | 1246    9       16      |
| 479     1479    6       | 2459    12459   8       | 1245    12457   3       |
+-------------------------+-------------------------+-------------------------+
| 45689   4689    489     | 3       159     1579    | 1456    145678  2       |
| 1       23689   2389    | 25789   259     4       | 356     35678   5678    |
| 458    b2348    7       | 258     6       15      | 9       13458   158     |
+-------------------------+-------------------------+-------------------------+

2r1c2 = 2r1c8 & 3r9c2 (symmetry) => -2r9c2, -3r1c8, stte
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: Parquet (skfr 8.3)

Postby yzfwsf » Mon Jan 17, 2022 5:19 pm

This technique is now implemented in my solver,thanks for the puzzle.
Code: Select all
Gurth's symmetry placement:  =>
Axisymmetric Conjugate Pair: r2c7,r9c2<>2,r1c8,r8c3<>3
Candidate's mapping in Central: 1<=>4 2<=>3 5<=>9 6<=>8 7<=>7
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Parquet (skfr 8.3)

Postby P.O. » Tue Jan 18, 2022 11:02 am

Code: Select all
four chains in two grid states:

469     12469   5       49      8       369     7       1236    169             
6789    26789   289     1       359     35679   23×56   23568   4               
3       146789  1489    4579    459     2       156     1568    15689           
2       13479   1349    6       13459   1359    8       1457    157             
48      5       1348    24      7       13      1246    9       16               
479     1479    6       2459    12459   8       1245    12457   3               
45689   4689    489     3       159     1579    1456    145678  2               
1       23689   238×9   25789   259     4       356     35678   5678             
458     2348    7       258     6       15      9       13458   158             

first state:
c7n3{r2 r8} - r9n3{c8 c2} - r9n2{c2 c4} - c4{r1r5}{n4n9} - c4{r3r6}{n5n7} - b2{r1c6r2c5r2c6}{n3n5n6} => r2c7 <> 5
c3n2{r8 r2} - r1n2{c2 c8} - r1n3{c8 c6} - c6{r5r9}{n1n5} - c6{r4r7}{n7n9} - b8{r8c4r8c5r9c4}{n2n8n9} => r8c3 <> 9

469     12469   5       49      8       369     7       1236    169             
6789    26789   289     1       359     35679   236     23568   4               
3       146789  1489    4579    459     2       156     1568    15689           
2       1×3479  1×349   6       13459   1359    8       1457    157             
48      5       1348    ×24     7       1×3     1246    9       16               
479     1479    6       2459    12459   8       1245    12457   3               
45689   4689    489     3       159     1579    1456    145678  2               
1       23689   238     25789   259     4       356     35678   5678             
458     2348    7       258     6       15      9       13458   158             

second state:
r9n2{c4 c2} - r9n3{c2 c8} - r1n3{c8 c6} - r5n3{c6 c3} - r8c3{n2n3 n8} - r7n8{c1c2c3 c8} - c8n4{r7 r4r6} - r5{c6c7c9}{n1n2n6} => r5c4 <> 2
b5n3{r4c5 r4c6r5c6} - r1n3{c6 c8} - r1n2{c8 c2} - r9n2{c2 c4} - r5n2{c4 c7} - r2c7{n2n3 n6} - r3n6{c7c8c9 c2} - c2n1{r3 r4r6} - r5{c1c3c4}{n3n4n8} => r4c2 r4c3 r5c6 <> 3

ste.
P.O.
 
Posts: 1731
Joined: 07 June 2021

Re: Parquet (skfr 8.3)

Postby champagne » Tue Jan 18, 2022 12:18 pm

eleven wrote:2r1c2 = 2r1c8 & 3r9c2 (symmetry) => -2r9c2, -3r1c8, stte


Hi eleven,

This pushes me back years ago. But thanks to the one posting such an example.
Difficult to beat and nice solution.
My very first solver (full tagging) was perfectly designed to extract a similar chain. Not 100% sure that this is true to-day, but i did not work for long on the solver side.

BTW the symmetry seems to be studied again.

EDIT: I wrote this post relying on the expertise of eleven. I must confess that more details on the reasoning would be welcome on my side.
Edit2: showing 4r1c4;1r9c6 wrong seems easier to me
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany


Return to Puzzles