Hi SpAce,
You forced me to get out my confinement ! Happy to hear you breaking your vow of silence...
I am in line with your post. As I was not aware of your tutorial, I have made my own manual processing of the two puzzles dealt with in this thread.
In my first post I wrote: P&P first step: Clearly, it meant that I had found the MSLS manually.
Reading multiple comments about the difficulty to find MSLS manually, I added an Edit line on April 24. It seems that nobody trusted me.
Of course I could have cheated using Phil's or yzfwsf's solvers.
My method is very close to David's document. For the Paquita's SE11.8 puzzle, here is how it can be treated:
Searching for lines (rows or columns) with two givens each, one can spot easily columns 4, 6, 8.
The set of givens in these columns is {1, 2, 3, 5}: a good candidate for a MSLS base (Home set in David's vocabulary} A fourth column containing two of these base digits would help. Column 9 does, let's forget 4r9c9 for the moment. The four columns c4689 provide 2 links each (the base candidates not placed within)
Now searching for cross-lines with no base digit as a given, one can easily spot rows 1, 2, 4, 7.
What is left to be done is to count the not solved cells at the crossings of these rows with columns c4689, here 16 cells (yielding thus 16 truths); and to count the links provided in rows r1247 by digits complementary to the base set, here these four rows provide 2 links each (the non-base candidates not placed within)
And... what a chance, the truth count equals the link count.
- Code: Select all
+-------------------------+-------------------------+---------------------------+
| 9 8 <124 | 7 1235-4 <3456 | 1235 <1456 <136 |46
| 7 6 <124 | 1235 8 <3459 | 1235-9 <1459 <139 |49
| 1234 1234 5 | 126 124 469 | 1289 46789-1 6789-1 |
+-------------------------+-------------------------+---------------------------+
| 8 125-7 <1267 | 9 235-7 <3567 | 4 <167 <1367 |67
| 1456 14579 3 | 568 457 4678-5 | 189 2 6789-1 |
| 246 2479 4679-2 | 2368 2347 1 | 389 6789 5 |
+-------------------------+-------------------------+---------------------------+
| 1235 1235-9 <1289 | 4 6 <358 | 7 <1589 <189 |89
| 1345 13457 478-1 | 1358 9 78-35 | 6 8-15 2 |
| 156 1579 6789-1 | 158 157 2 | 1589 3 4 |
+-------------------------+-------------------------+---------------------------+
12 35 15 13
16 cells, 16 links, 16 elim.
Not more than 10 minutes, just the time needed to count the givens in rows and columns, to issue a PM table and to count the links in selected lines.
Now, yzfwsf posted "for fun" an output picture of his solver, showing three MSLS's for this puzzle.
In fact there are four !
I have a personal conjecture. When you have found a MSLS, there exists a second one, that I would call a dual one, having the same base digits, but using the unused lines of the first one with inverted roles: in the above puzzle,
- columns 1, 2, 4, 5, 7 as Home set houses (i.e. as houses for links with digits 1, 2, 3, 5)
- rows 3, 5, 6, 7, 9 as Away set houses (i.e. as houses for links with digits 4, 6, 7, 8, 9)
give a 5x5 MSLS with 23 cells "only" because of given (or solved) cells r8c57.
The link count and the eliminations are shown in the following PM's
- Code: Select all
+-------------------------+-------------------------+---------------------------+
| 9 8 124 | 7 1235-4 3456 | 1235 1456 136 |
| 7 6 124 | 1235 8 3459 | 1235-9 1459 139 |
| <1234 <1234 5 | <126 <124 469 | <1289 46789-1 6789-1 |123
+-------------------------+-------------------------+---------------------------+
| 8 125-7 1267 | 9 235-7 3567 | 4 167 1367 |
| <1456 <14579 3 | <568 <457 4678-5 | <189 2 6789-1 |15
| <246 <2479 4679-2 | <2368 <2347 1 | <389 6789 5 |23
+-------------------------+-------------------------+---------------------------+
| 1235 1235-9 1289 | 4 6 358 | 7 1589 189 |
| <1345 <13457 478-1 | <1358 9 78-35 | 6 8-15 2 |135
| <156 <1579 6789-1 | <158 <157 2 | <1589 3 4 |15
+-------------------------+-------------------------+---------------------------+
46 479 68 47 89
23 cells, r35689 c12457 (25 intersections minus r8c57)
23 links: 123r3, 15r5, 23r6, 135r8, 15r9, 46c1, 479c2, 68c4, 47c5, 89c7
16 eliminations (before running basics) Same eliminations as the 16-cell MSLS
Now, with a careful search, it can be seen easily that row 8 can be added to the 16 cell-MSLS
Row 8 adds three cells: r8c368, and three links: 478r8. So the truth-link balance is unchanged.
- Code: Select all
+-------------------------+-------------------------+---------------------------+
| 9 8 <124 | 7 1235-4 <3456 | 1235 <1456 <136 |46
| 7 6 <124 | 1235 8 <3459 | 1235-9 <1459 <139 |49
| 1234 1234 5 | 126 124 469 | 1289 46789-1 6789-1 |
+-------------------------+-------------------------+---------------------------+
| 8 125-7 <1267 | 9 235-7 <3567 | 4 <167 <1367 |67
| 1456 14579 3 | 568 457 4678-5 | 189 2 6789-1 |
| 246 2479 4679-2 | 2368 2347 1 | 389 6789 5 |
+-------------------------+-------------------------+---------------------------+
| 1235 1235-9 <1289 | 4 6 <358 | 7 <1589 <189 |89
| 135-4 135-47 <1478 | 135-8 9 <3578 | 6 <158 2 |478
| 156 1579 6789-1 | 158 157 2 | 1589 3 4 |
+-------------------------+-------------------------+---------------------------+
12 35 15 13
19 cells, 19 links, 15 eliminations
Same transformation as above for its dual MSLS:
- Code: Select all
+-------------------------+-------------------------+---------------------------+
| 9 8 124 | 7 1235-4 3456 | 1235 1456 136 |
| 7 6 124 | 1235 8 3459 | 1235-9 1459 139 |
| <1234 <1234 5 | <126 <124 469 | <1289 46789-1 6789-1 |123
+-------------------------+-------------------------+---------------------------+
| 8 125-7 1267 | 9 235-7 3567 | 4 167 1367 |
| <1456 <14579 3 | <568 <457 4678-5 | <189 2 6789-1 |15
| <246 <2479 4679-2 | <2368 <2347 1 | <389 6789 5 |23
+-------------------------+-------------------------+---------------------------+
| 1235 1235-9 1289 | 4 6 358 | 7 1589 189 |
| 135-4 135-47 1478 | 135-8 9 3578 | 6 158 2 |
| <156 <1579 6789-1 | <158 <157 2 | <1589 3 4 |15
+-------------------------+-------------------------+---------------------------+
46 479 68 47 89
20 cells, 20 links, 15 eliminations (same as its dual 19 cells)
For the example posted by yzfwsf, in the same way I started to count the givens in columns. Found columns 5, 6, 9 with two givens in the set {1, 2, 3, 6}, column 8 could then be the complement. Rows 1, 2, 5, 7 seem to be the expected cross lines. But the truth-link balance is far from being reached. So, one has to try the other base set {1, 2, 3, 4} also possible in these columns. The process lead to the 16 cells MSLS discussed above.
- Code: Select all
+---------------------------+------------------------------+---------------------------+
| 9 8 7 | 6 <1245 <345 | 1234 <235 <145 |5
| 5 12346 12346 | 1234-9 <12479 <3479 | 8 <2379 <1479 |79
| 123 1234 1234 | 123489 5789-124 5789-34 | 123479 6 579-14 |
+---------------------------+------------------------------+---------------------------+
| 4 125 12589 | 189 6 789 | 279 5789-2 3 |
| 123-8 7 123-89 | 5 <1489 <3489 | 6 <289 <489 |89
| 368 356 35689 | 3489 789-4 2 | 479 1 5789-4 |
+---------------------------+------------------------------+---------------------------+
| 123-68 9 1234-68 | 7 <248 <468 | 5 <38 <168 |68
| 1678 1456 14568 | 489 3 5689-4 | 179 789 2 |
| 23678 2356 23568 | 289 589-2 1 | 379 4 6789 |
+---------------------------+------------------------------+---------------------------+
124 34 23 14
16 cells, 16 links, 19 eliminations
Now if one tries to find a MSLS from the count of givens in rows, rows 689 are selected with two givens each in the set {1, 2, 3, 4}. Row 4 is the obvious complement. Columns 1247 with quite no base digit are selected first. Unfortunately, no balanced MSLS: 15 cells, 17 links. The only row that could be added is row 3: adds 4 cells but also 4 links (digits 1, 2, 3, 4) It is necessary to add also a column: will add five cells and hopefully less links. Column 3 does, but adds 4 links.
The balance is now 24 cells vs 25 links.
This is the point immediately encountered when searching the dual MSLS of the 16-cell MSLS. To get a balanced count of links, it can be noticed that in stack 1, there are 3 links of digit 6: 6c1, 6c2, 6c3 while the 6s in MSLS c123-cells are all in boxes 4 & 7.
- Code: Select all
+---------------------------+------------------------------+---------------------------+
| 9 8 7 | 6 1245 345 | 1234 235 145 |
| 5 12346 12346 | 12349 12479 3479 | 8 2379 1479 |
| <123 <1234 <1234 | <123489 1245789 345789 | <123479 6 14579 |1234
+---------------------------+------------------------------+---------------------------+
| 4 <125 <12589 | <189 6 789 | <279 25789 3 |12
| 1238 7 12389 | 5 1489 3489 | 6 289 489 |
| <368 <356 <35689 | <3489 4789 2 | <479 1 45789 |34
+---------------------------+------------------------------+---------------------------+
| 12368 9 123468 | 7 248 468 | 5 38 168 |
| <1678 <1456 <14568 | <489 3 45689 | <179 789 2 |14
| <23678 <2356 <23568 | <289 2589 1 | <379 4 6789 |23
+---------------------------+------------------------------+---------------------------+
678 56 5689 89 79
Un balanced: 24 truths, 25 links
So, eventually here is the dual MSLS:
- Code: Select all
+---------------------------+------------------------------+---------------------------+
| 9 8 7 | 6 1245 345 | 1234 235 145 |
| 5 12346 12346 | 1234-9 12479 3479 | 8 2379 1479 |
| <123 <1234 <1234 | <123489 5789-124 5789-34 | <123479 6 579-14 |1234
+---------------------------+------------------------------+---------------------------+
| 4 <125 <12589 | <189 6 789 | <279 5789-2 3 |12
| 123-8 7 123-89 | 5 1489 3489 | 6 289 489 |
| <368 <356 <35689 | <3489 79-4 2 | <479 1 5789-4 |34
+---------------------------+------------------------------+---------------------------+
| 123-68 9 1234-68 | 7 248 468 | 5 38 168 |
| <1678 <1456 <14568 | <489 3 5689-4 | <179 789 2 |14
| <23678 <2356 <23568 | <289 589-2 1 | <379 4 6789 |23
+---------------------------+------------------------------+---------------------------+
78 5 589 89 79
6b4 6b7
24 cells, 24 links: 1r3, 2r3, 3r3, 4r3, 1r4, 2r4, 3r6, 4r6, 1r8, 4r8, 2r9, 3r9, 6b4, 6b7, 7c1, 8c1, 5c2, 5c3, 8c3, 9c3, 8c4, 9c4, 7c7, 9c7
19 eliminations (same as dual 16-cell MSLS)