.
All the puzzles in the above list are in Z2, except two in Z3:
- Code: Select all
6..3....................1...7..2..........4...... ED=7.7/7.7/2.9 #2
.................56.3...471...................... ED=7.7/7.7/2.9 #5
What's more interesting is when I activate only (Naked, Hidden and Super-Hidden (i.e. Fish)) Subsets. Apart from the above two, all the puzzles can be solved with Subsets[3].
Here is my preferred example (#4 in the list)
- Code: Select all
. . . . . . .
. . . . . . .
. 2 . . 7 . .
. . . . . . .
. . . . . . 4
1 . . . 6 . .
. 3 . . . . .
...............2..7...............41...6...3.....
ED=7.7/7.7/2.9
- Code: Select all
Resolution state after Singles:
24567 14567 25 13567 12345 234567 135
3457 1457 13567 256 2345 123456 12567
345 2 13456 3456 7 1456 1356
3567 14567 3457 123456 1245 256 12357
23567 567 12356 157 1235 12357 4
1 45 2457 23457 6 357 2357
2456 3 124567 12457 15 1457 2567
181 candidates, 1563 csp-links and 1563 links. Density = 9.59%
Notice the very high density, typical of Pandiags.
The first steps are a mix of all the types of whips[1] (i.e. rn, cn, dn, an):
- Code: Select all
whip[1]: a7n4{r7c6 .} ==> r7c3 ≠ 4
whip[1]: r7n4{c6 .} ==> r2c6 ≠ 4
whip[1]: d4n1{r7c5 .} ==> r7c3 ≠ 1
whip[1]: r7n1{c6 .} ==> r1c5 ≠ 1
whip[1]: d3n3{r5c6 .} ==> r5c1 ≠ 3
whip[1]: d5n3{r6c7 .} ==> r3c7 ≠ 3
whip[1]: a3n6{r4c6 .} ==> r4c4 ≠ 6, r2c6 ≠ 6, r4c2 ≠ 6
whip[1]: r4n6{c6 .} ==> r3c7 ≠ 6
whip[1]: c7n6{r7 .} ==> r1c1 ≠ 6, r1c6 ≠ 6
whip[1]: c6n6{r4 .} ==> r7c3 ≠ 6
whip[1]: r7n6{c7 .} ==> r3c4 ≠ 6
whip[1]: r3n6{c6 .} ==> r5c1 ≠ 6
whip[1]: c1n6{r7 .} ==> r2c3 ≠ 6
whip[1]: d6n2{r2c5 .} ==> r2c7 ≠ 2
whip[1]: d1n2{r6c3 .} ==> r1c5 ≠ 2
- Code: Select all
Resolution state after Singles and whips[1]:
2457 14567 25 13567 345 23457 135
3457 1457 1357 256 2345 1235 1567
345 2 13456 345 7 1456 15
3567 1457 3457 12345 1245 256 12357
257 567 12356 157 1235 12357 4
1 45 2457 23457 6 357 2357
2456 3 257 12457 15 1457 2567
Then comes a nice mix of Swordfishes in columns, diagonals or anti-diagonals with transversal cover sets.
Notice that both base sets and cover sets are homogeneous in all the cases (i.e. of a single type: rn, cn, dn or an). (Fully mixed Fishes are not coded in LatinRules - and will probably never be, as there are too many possible cases. They are the exotic Fishes of Pandiagonal Latin Squares.)
Transversal cover sets merely means cover sets are of a different kind than base sets. Given any type x of homogeneous base sets (x = rn, cn, dn or an), a homogeneous transversal cover set can be of any homogeneous type (rn, cn, dn or an) except x.
- Code: Select all
swordfish-in-columns-w-transv-anti-diags: n2{c1 c5 c7}{a2 a4 a1} ==> a4c3 ≠ 2, a2c6 ≠ 2, a1c4 ≠ 2
swordfish-in-diags-w-transv-columns: n4{d2 d3 d7}{c4 c1 c2} ==> d5c2 ≠ 4, d6c4 ≠ 4, d1c1 ≠ 4
swordfish-in-anti-diags-w-transv-rows: n3{a4 a5 a7}{r4 r2 r1} ==> r4a1 ≠ 3, r2a2 ≠ 3, r1a6 ≠ 3
swordfish-in-anti-diags-w-transv-columns: n1{a4 a5 a7}{c7 c6 c4} ==> a2c6 ≠ 1, a1c4 ≠ 1, a6c7 ≠ 1
Notice that for Fish patterns, I use the coordinate system that is most natural to each of them.
The end is less remarkable: Show naked-pairs-in-a-diagonal: d7{a1 a4}{n4 n5} ==> d7a2 ≠ 5, d7a2 ≠ 4, d7a6 ≠ 5, d7a5 ≠ 5, d7a7 ≠ 5
whip[1]: d7n5{r6c2 .} ==> r2c2 ≠ 5, r4c2 ≠ 5, r1c4 ≠ 5, r4c7 ≠ 5, r6c4 ≠ 5, r6c6 ≠ 5
whip[1]: d4n5{r7c5 .} ==> r4c5 ≠ 5
whip[1]: r7n4{c6 .} ==> r1c5 ≠ 4
whip[1]: r1n4{c6 .} ==> r6c4 ≠ 4
whip[1]: c4n4{r7 .} ==> r2c2 ≠ 4
whip[1]: r2n4{c5 .} ==> r4c3 ≠ 4
whip[1]: c3n4{r6 .} ==> r3c6 ≠ 4
naked-pairs-in-a-column: c2{r2 r4}{n1 n7} ==> r5c2 ≠ 7, r1c2 ≠ 7, r1c2 ≠ 1
whip[1]: r1n1{c7 .} ==> r4c7 ≠ 1, r5c4 ≠ 1
whip[1]: r5n1{c5 .} ==> r7c5 ≠ 1, r3c3 ≠ 1
stte
Considering the potentially very large number of Fishes to try, I feared long computation times, but the whole list (104 puzzles) was solved in 30s.
What I'm still missing is Jellyfishes (which means harder puzzles).
Anyway, I hope these puzzles by 1to9only show that the 7x7 case is interesting.