.
1) First solution, based on the impossible patterns that most frequently follow a tridagon:- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 123 6 1234 ! 123 9 8 ! 7 125 2345 !
! 7 1234 9 ! 6 123 5 ! 134 8 234 !
! 8 5 123 ! 4 7 123 ! 1369 1269 2369 !
+----------------------+----------------------+----------------------+
! 123 7 6 ! 5 8 123 ! 139 4 239 !
! 4 123 8 ! 9 1236 12367 ! 1356 12567 2356 !
! 5 9 123 ! 123 12346 123467 ! 136 1267 8 !
+----------------------+----------------------+----------------------+
! 6 1234 12345 ! 123 12345 12349 ! 8 59 7 !
! 129 8 125 ! 7 1256 1269 ! 4569 3 4569 !
! 39 34 7 ! 8 3456 3469 ! 2 569 1 !
+----------------------+----------------------+----------------------+
170 candidates.
The patterns used:
- Code: Select all
Trid-OR2-relation for digits 1, 2 and 3 in blocks:
b1, with cells (marked #): r1c1, r2c2, r3c3
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r4c1, r5c2, r6c3
b5, with cells (marked #): r4c6, r5c5, r6c4
with 2 guardians (in cells marked @): n4r2c2 n6r5c5
+----------------------+----------------------+----------------------+
! 123# 6 1234 ! 123# 9 8 ! 7 125 2345 !
! 7 1234#@ 9 ! 6 123# 5 ! 134 8 234 !
! 8 5 123# ! 4 7 123# ! 1369 1269 2369 !
+----------------------+----------------------+----------------------+
! 123# 7 6 ! 5 8 123# ! 139 4 239 !
! 4 123# 8 ! 9 1236#@ 12367 ! 1356 12567 2356 !
! 5 9 123# ! 123# 12346 123467 ! 136 1267 8 !
+----------------------+----------------------+----------------------+
! 6 1234 12345 ! 123 12345 12349 ! 8 59 7 !
! 129 8 125 ! 7 1256 1269 ! 4569 3 4569 !
! 39 34 7 ! 8 3456 3469 ! 2 569 1 !
+----------------------+----------------------+----------------------+
EL13c290s-OR4-relation for digits: 1, 2 and 3
in cells (marked #): (r7c6 r7c4 r7c2 r6c4 r6c3 r4c6 r4c1 r1c4 r1c1 r3c6 r3c3 r2c5 r2c2)
with 4 guardians (in cells marked @) : n4r7c6 n9r7c6 n4r7c2 n4r2c2
+-------------------------+-------------------------+-------------------------+
! 123# 6 1234 ! 123# 9 8 ! 7 125 2345 !
! 7 1234#@ 9 ! 6 123# 5 ! 134 8 234 !
! 8 5 123# ! 4 7 123# ! 1369 1269 2369 !
+-------------------------+-------------------------+-------------------------+
! 123# 7 6 ! 5 8 123# ! 139 4 239 !
! 4 123 8 ! 9 1236 12367 ! 1356 12567 2356 !
! 5 9 123# ! 123# 12346 123467 ! 136 1267 8 !
+-------------------------+-------------------------+-------------------------+
! 6 1234#@ 12345 ! 123# 12345 12349#@ ! 8 59 7 !
! 129 8 125 ! 7 1256 1269 ! 4569 3 4569 !
! 39 34 7 ! 8 3456 3469 ! 2 569 1 !
+-------------------------+-------------------------+-------------------------+
EL14c30s-OR4-relation for digits: 1, 2 and 3
in cells (marked #): (r7c4 r7c2 r6c4 r6c3 r5c6 r5c2 r4c6 r4c1 r1c4 r1c1 r3c6 r3c3 r2c5 r2c2)
with 4 guardians (in cells marked @) : n4r7c2 n6r5c6 n7r5c6 n4r2c2
+-------------------------+-------------------------+-------------------------+
! 123# 6 1234 ! 123# 9 8 ! 7 125 2345 !
! 7 1234#@ 9 ! 6 123# 5 ! 134 8 234 !
! 8 5 123# ! 4 7 123# ! 1369 1269 2369 !
+-------------------------+-------------------------+-------------------------+
! 123# 7 6 ! 5 8 123# ! 139 4 239 !
! 4 123# 8 ! 9 1236 12367#@ ! 1356 12567 2356 !
! 5 9 123# ! 123# 12346 123467 ! 136 1267 8 !
+-------------------------+-------------------------+-------------------------+
! 6 1234#@ 12345 ! 123# 12345 12349 ! 8 59 7 !
! 129 8 125 ! 7 1256 1269 ! 4569 3 4569 !
! 39 34 7 ! 8 3456 3469 ! 2 569 1 !
+-------------------------+-------------------------+-------------------------+
EL14c1s-OR4-relation for digits: 1, 2 and 3
in cells (marked #): (r7c4 r7c3 r7c2 r5c2 r6c4 r6c3 r4c6 r4c1 r1c4 r1c1 r3c6 r3c3 r2c5 r2c2)
with 4 guardians (in cells marked @) : n4r7c3 n5r7c3 n4r7c2 n4r2c2
+-------------------------+-------------------------+-------------------------+
! 123# 6 1234 ! 123# 9 8 ! 7 125 2345 !
! 7 1234#@ 9 ! 6 123# 5 ! 134 8 234 !
! 8 5 123# ! 4 7 123# ! 1369 1269 2369 !
+-------------------------+-------------------------+-------------------------+
! 123# 7 6 ! 5 8 123# ! 139 4 239 !
! 4 123# 8 ! 9 1236 12367 ! 1356 12567 2356 !
! 5 9 123# ! 123# 12346 123467 ! 136 1267 8 !
+-------------------------+-------------------------+-------------------------+
! 6 1234#@ 12345#@ ! 123# 12345 12349 ! 8 59 7 !
! 129 8 125 ! 7 1256 1269 ! 4569 3 4569 !
! 39 34 7 ! 8 3456 3469 ! 2 569 1 !
+-------------------------+-------------------------+-------------------------+
- EL14c1s-OR4-relation between candidates n4r7c3, n5r7c3, n4r7c2 and n4r2c2
+ same valence for candidates n4r7c3 and n4r2c2 via c-chain[2]: n4r7c3,n4r1c3,n4r2c2
==> EL14c1s-OR4-relation can be split into two EL14c1s-OR3-relations with respective lists of guardians:
n5r7c3 n4r7c2 n4r2c2 and n4r7c3 n5r7c3 n4r7c2 .
EL14c1s-OR3-whip[2]: OR3{{n5r7c3 n4r7c3 | n4r7c2}} - r9c2{n4 .} ==> r7c3≠3
Trid-OR2-whip[3]: OR2{{n6r5c5 | n4r2c2}} - c7n4{r2 r8} - c7n5{r8 .} ==> r5c7≠6whip[4]: r1n4{c3 c9} - r1n5{c9 c8} - r9n5{c8 c5} - r7n5{c5 .} ==> r7c3≠4
hidden-single-in-a-column ==> r1c3=4
Resolution state RS1- At least one candidate of a previous Trid-OR2-relation between candidates n4r2c2 n6r5c5 has just been eliminated.
There remains a Trid-OR1-relation between candidates: n6r5c5
Trid-ORk-relation with only one candidate => r5c5=6- At least one candidate of a previous EL14c1s-OR3-relation between candidates n5r7c3 n4r7c2 n4r2c2 has just been eliminated.
There remains an EL14c1s-OR2-relation between candidates: n5r7c3 n4r7c2
- At least one candidate of a previous EL14c30s-OR4-relation between candidates n4r7c2 n6r5c6 n7r5c6 n4r2c2 has just been eliminated.
There remains an EL14c30s-OR2-relation between candidates: n4r7c2 n7r5c6
- At least one candidate of a previous EL13c290s-OR4-relation between candidates n4r7c6 n9r7c6 n4r7c2 n4r2c2 has just been eliminated.
There remains an EL13c290s-OR3-relation between candidates: n4r7c6 n9r7c6 n4r7c2
whip[2]: c3n3{r3 r6} - b5n3{r6c4 .} ==> r3c6≠3
EL14c1s-OR2-whip[4]: r7c8{n9 n5} - OR2{{n5r7c3 | n4r7c2}} - r9c2{n4 n3} - r9c1{n3 .} ==> r9c8≠9whip[4]: c6n6{r8 r9} - c6n9{r9 r7} - r7c8{n9 n5} - r9c8{n5 .} ==> r8c6≠1
whip[4]: c6n6{r8 r9} - c6n9{r9 r7} - r7c8{n9 n5} - r9c8{n5 .} ==> r8c6≠2
EL14c30s-OR2-whip[4]: r6n7{c8 c6} - OR2{{n7r5c6 | n4r7c2}} - c6n4{r7 r9} - r9n6{c6 .} ==> r6c8≠6hidden-single-in-a-block ==> r6c7=6
EL14c1s-OR2-whip[5]: r9c2{n3 n4} - OR2{{n4r7c2 | n5r7c3}} - r7c8{n5 n9} - c6n9{r7 r8} - c6n6{r8 .} ==> r9c6≠3
EL13c290s-OR3-whip[3]: OR3{{n4r7c2 n4r7c6 | n9r7c6}} - r8c6{n9 n6} - r9c6{n6 .} ==> r7c5≠4End in W6, with nothing noticeable:
whip[6]: r3c6{n1 n2} - r4c6{n2 n3} - r6n3{c6 c3} - r5c2{n3 n2} - r4n2{c1 c9} - r2n2{c9 .} ==> r5c6≠1
whip[6]: r3c6{n2 n1} - r4c6{n1 n3} - r6n3{c6 c3} - r5c2{n3 n1} - r4n1{c1 c7} - r2n1{c7 .} ==> r5c6≠2
whip[7]: b7n3{r9c2 r9c1} - c1n9{r9 r8} - r8c6{n9 n6} - c9n6{r8 r3} - c9n9{r3 r4} - c7n9{r4 r3} - r3n3{c7 .} ==> r2c2≠3
whip[6]: c7n5{r5 r8} - r8n4{c7 c9} - r8n6{c9 c6} - r8n9{c6 c1} - r9c1{n9 n3} - c2n3{r9 .} ==> r5c7≠3
whip[6]: c6n3{r6 r7} - r7n4{c6 c2} - r9c2{n4 n3} - b4n3{r5c2 r4c1} - r1n3{c1 c9} - r5n3{c9 .} ==> r6c4≠3
whip[6]: r6c4{n2 n1} - r1c4{n1 n3} - b1n3{r1c1 r3c3} - r6c3{n3 n2} - c5n2{r6 r2} - c2n2{r2 .} ==> r7c4≠2
whip[6]: r5n1{c8 c2} - r2n1{c2 c5} - b2n3{r2c5 r1c4} - c4n2{r1 r6} - r6c3{n2 n3} - b1n3{r3c3 .} ==> r4c7≠1
whip[5]: c4n2{r6 r1} - r3c6{n2 n1} - r3c3{n1 n3} - r1c1{n3 n1} - r4n1{c1 .} ==> r6c3≠2
whip[4]: c2n4{r7 r9} - c2n3{r9 r5} - c3n3{r6 r3} - c3n2{r3 .} ==> r7c2≠2
whip[4]: b1n3{r1c1 r3c3} - r6c3{n3 n1} - c4n1{r6 r7} - c2n1{r7 .} ==> r1c1≠1
biv-chain[3]: c2n2{r5 r2} - r1c1{n2 n3} - c3n3{r3 r6} ==> r5c2≠3
whip[1]: c2n3{r9 .} ==> r9c1≠3
naked-single ==> r9c1=9
naked-pairs-in-a-column: c2{r2 r5}{n1 n2} ==> r7c2≠1
finned-x-wing-in-columns: n3{c1 c7}{r4 r1} ==> r1c9≠3
naked-triplets-in-a-row: r8{c1 c3 c5}{n1 n2 n5} ==> r8c9≠5, r8c7≠5
w1-tte
Second solution, using eleven's replacement technique:Same start upto RS1 (and without the ORk relations other than tridagon)
- Code: Select all
+-------------------+-------------------+-------------------+
! 123 6 4 ! 123 9 8 ! 7 125 235 !
! 7 123 9 ! 6 123 5 ! 134 8 234 !
! 8 5 123 ! 4 7 123 ! 1369 1269 2369 !
+-------------------+-------------------+-------------------+
! 123 7 6 ! 5 8 123 ! 139 4 239 !
! 4 123 8 ! 9 6 1237 ! 135 1257 235 !
! 5 9 123 ! 123 1234 12347 ! 136 1267 8 !
+-------------------+-------------------+-------------------+
! 6 1234 1235 ! 123 12345 12349 ! 8 59 7 !
! 129 8 125 ! 7 125 1269 ! 4569 3 4569 !
! 39 34 7 ! 8 345 3469 ! 2 569 1 !
+-------------------+-------------------+-------------------+
***** STARTING ELEVEN''S REPLACEMENT TECHNIQUE *****
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
Trying in block 4
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to 3 digits 1, 2 and 3 in 3 cells r6c3, r5c2 and r4c1,
the resolution state is:
- Code: Select all
+----------------------+----------------------+----------------------+
! 123 6 4 ! 123 9 8 ! 7 1235 1235 !
! 7 123 9 ! 6 123 5 ! 1234 8 1234 !
! 8 5 123 ! 4 7 123 ! 12369 12369 12369 !
+----------------------+----------------------+----------------------+
! 3 7 6 ! 5 8 123 ! 1239 4 1239 !
! 4 2 8 ! 9 6 1237 ! 1235 12357 1235 !
! 5 9 1 ! 123 1234 12347 ! 1236 12367 8 !
+----------------------+----------------------+----------------------+
! 6 1234 1235 ! 123 12345 12349 ! 8 59 7 !
! 1239 8 1235 ! 7 1235 12369 ! 4569 123 4569 !
! 1239 1234 7 ! 8 12345 123469 ! 123 569 123 !
+----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
This is easily solved in W3:
whip[1]: b5n1{r5c6 .} ==> r9c6≠1, r3c6≠1, r7c6≠1, r8c6≠1
whip[1]: r3n1{c9 .} ==> r1c8≠1, r1c9≠1, r2c7≠1, r2c9≠1
naked-pairs-in-a-row: r3{c3 c6}{n2 n3} ==> r3c9≠3, r3c9≠2, r3c8≠3, r3c8≠2, r3c7≠3, r3c7≠2
finned-x-wing-in-rows: n2{r3 r7}{c3 c6} ==> r9c6≠2, r8c6≠2
finned-x-wing-in-rows: n1{r2 r7}{c2 c5} ==> r9c5≠1, r8c5≠1
whip[1]: b8n1{r7c5 .} ==> r7c2≠1
biv-chain[3]: r3c6{n2 n3} - b1n3{r3c3 r2c2} - r2n1{c2 c5} ==> r2c5≠2
whip[1]: r2n2{c9 .} ==> r1c8≠2, r1c9≠2
naked-pairs-in-a-block: b3{r1c8 r1c9}{n3 n5} ==> r2c9≠3, r2c7≠3
whip[1]: b3n3{r1c9 .} ==> r1c4≠3
biv-chain[3]: r2c5{n3 n1} - c4n1{r1 r7} - c4n3{r7 r6} ==> r6c5≠3
biv-chain[3]: r7c2{n4 n3} - r2n3{c2 c5} - c5n1{r2 r7} ==> r7c5≠4
whip[3]: r1c1{n2 n1} - r8n1{c1 c8} - b9n2{r8c8 .} ==> r9c1≠2
whip[2]: c8n2{r6 r8} - r9n2{c9 .} ==> r6c5≠2
naked-single ==> r6c5=4
whip[1]: c5n2{r9 .} ==> r7c4≠2, r7c6≠2
hidden-triplets-in-a-column: c6{n4 n6 n9}{r7 r9 r8} ==> r9c6≠3, r8c6≠3, r7c6≠3
whip[2]: r2n3{c2 c5} - b8n3{r9c5 .} ==> r7c2≠3
stte
- Code: Select all
+-------+-------+-------+
! 1 6 4 ! 2 9 8 ! 7 3 5 !
! 7 3 9 ! 6 1 5 ! 2 8 4 !
! 8 5 2 ! 4 7 3 ! 1 9 6 !
+-------+-------+-------+
! 3 7 6 ! 5 8 2 ! 9 4 1 !
! 4 2 8 ! 9 6 1 ! 5 7 3 !
! 5 9 1 ! 3 4 7 ! 6 2 8 !
+-------+-------+-------+
! 6 4 3 ! 1 2 9 ! 8 5 7 !
! 2 8 5 ! 7 3 6 ! 4 1 9 !
! 9 1 7 ! 8 5 4 ! 3 6 2 !
+-------+-------+-------+
Comparing block b9 with the given puzzle shows that one must apply relabelling: (1 2 3) -> (3 1 2)
.