- Code: Select all
.1...79........63.8....2..74....8.....6.3.2.....6....97..8....6.92........34...7.
(If someone wants to solve it normally, it's a decent p&p puzzle but not much of a challenge otherwise.)
.1...79........63.8....2..74....8.....6.3.2.....6....97..8....6.92........34...7.
+----------------------+----------------------+-----------------------+
| 3 1 4 | 5 6 7 | 9 2 8 |
| 259 257 579 | 19 8 149 | 6 3 145 |
| 8 6 59 | 3 l149 2 | m145 145 7 |
+----------------------+----------------------+-----------------------+
| 4 357 f1579 | 2 a157-9 8 | 1357 6 135 |
| e159 57 6 | 179 3 1459 | 2 8 145 |
| i125 2357 8 | 6 ok1457 j145 | 13457 j145 9 |
+----------------------+----------------------+-----------------------+
| 7 4 15 | 8 2 n135 | m135 9 6 |
| d156 9 2 |nb17 nb157 1356 | 8 145 1345 |
| g156 8 3 | 4 nh159 1569 |mh15 7 2 |
+----------------------+----------------------+-----------------------+
Double Kraken (7)r468c5 & (1)r5689c1
(7)r4c5*
||a
(7)r8c5 - (7=1)r8c4 - (1)r8c1
||b c ||d
|| (1-9)r5c1 = (9)r4c3*
|| ||e f
|| (1)r9c1 - (15=9)r9c57*
|| ||g h
|| (1)r6c1 - (15=4)r6c68
|| i j \
|| (4)r6c5 = r3c5 - (415=3)r379c7 - (3=1579)b8p3458*
|| / k l m n
(7)r6c5 - - - - - - - - - - - - - - - - -
o
=>-9r4c5; ste
9r9c5 3r7c6 ALS (9157=3)b8p3458
3r7c7 4r3c7 ALS (315=4)r379c7
4r3c5 4r6c5
7r4c5 7r6c5 7r8c5
7r8c4 1r8c4
4r6c68 1r6c68 ALS (45=1)r6c68
9r4c3 9r5c1
9r9c5 1r9c57 ALS (9=51)r9c57
1r8c1 1r6c1 1r5c1 1r9c1
=>-9r4c5; ste
Leren wrote:If you first use an X Wing to remove 9 from r9c5, then they are easy to prove. If not they are problematic (for me).
Cenoman wrote:Three ways to present the double Kraken columns (7)r468c5 & (1)r5689c1 (computer generated solution)