The solution contains 25 steps of Nice Loops or error nets (documentet brute force eliminations). Some steps do also include simpler deductions. Actually there was a lot funn work for me in this puzzle.
For each step I have tried about five different error nets and normally I choose the simplest of them. The first solution, I made was in 35 steps. Then I looked at all the steps again to find the esentially needed steps of the 35 and came out with 25 of them and the steps was also rearranged.
I include NLN notation for each step, as I understand the notation proposed by Carcul here. Furthermore I supply some graphics for each step made manually using the into sudoku program. There may easily be some errors, and I shall be glad to know about them or any comments. I'am not so experienced in solving and spotting Unique Rectangless or Almost Locked Sets. So I hope to see smarter or different solutions to the puzzle.
The puzzle starts as this:
...3..5...5..1..3...7..4..12.....4...6..9......1..6..28..7..2...9..8..5...5..9..7
or
- Code: Select all
. . . | 3 . . | 5 . .
. 5 . | . 1 . | . 3 .
. . 7 | . . 4 | . . 1
-------+-------+------
2 . . | . . . | 4 . .
. 6 . | . 9 . | . . .
. . 1 | . . 6 | . . 2
-------+-------+------
8 . . | 7 . . | 2 . .
. 9 . | . 8 . | . 5 .
. . 5 | . . 9 | . . 7
First you find one single, "7" in r8c1 and then a Swordfish with the candidate "2" in r258c346 eliminating candidates in r1c3, r1c6, r3c4 and r9c4. After this short "intro" the puzzle gets hard.
Here is the graphics of the Swordfish:
I normaly start such a hard puzzle by identifying the strong links and bivalue cells like this:
I happen to often to find something interesting with the few diagonal links its also the case here:
1a. [r4c9]-9-[r4c3]=9=[r6c1]=5=[r5c1]-5-[r5c9]=5=[r4c9] => r4c9<>9
and the very similar simple discountinuous Nice Loop:
1b. [r4c8]-9-[r4c3]=9=[r6c1]=5=[r5c1]-5-[r5c9]=5=[r4c9]=6=[r4c8] => r4c8<>9
- Code: Select all
2. [r1c2](-8-[r1c3])
(-8-[r2c3])
(-8-[r3c2])
{-8-[r1c6](-7-[r2c6])
(-7-[r5c6])
-7-[r1c8]=7=[r2c7]-7-[r5c7]=7=[r5c8]-7-[r6c8]}
=1=[r1c1]=9=[r1c89]-9-[r3c7]=9=[r6c7]-9-[r6c8](-8-[r3c8])
-8-[r9c8]=8=[r9c7]-8-[r3c7]
=8=[r3c4](-8-[r2c6])
=9=[r2c4]-9-[Naked Pair: r2c1|r1c3]-46-[r2c3]-2-[r2c6]
=> empty cell r2c6 => r1c2<>8
- Code: Select all
3. [r2c7](-9-[r2c4]=9=[r3c4]-9-[r3c1])
(=7=[r1c8]=2=[r2c8]-2-[r3c2])
(-9-[r2c1]=9=[r1c1]=1=[r1c2]=2=[r2c3]-2-[r2c4])
=7=[r1c8]-7-[r1c6](-8-[r2c4]-6-[r2c1]-4-[r56c1])
-8-[r1c3]=8=[r3c2]=3=[r3c1](-3-[r6c1])
-3-[r5c1]-5-[r6c1]
=> empty cell r6c1 => r2c7<>9
- Code: Select all
4. [r3c7](=9=[r6c7]-9-[r6c8])
(-8-[r5c7])
{-8-[r9c7]=8=[r9c8](-8-[r5c8])
-8-[r6c8](-7-[r6c5])
-7-[r6c2]=7=[r4c2](-7-[r4c5])
-7-[r4c6]=7=[r5c6]=2=[r5c4]}
-8-[r3c2]=8=[r46c2]-8-[r5c3]=8=[r5c9]=5=[r4c9](-5-[r4c5])
=3=[r5c7]-3-[r5c13]
=3=[r6c1](-3-[r9c1])
-3-[r3c1]=3=[r3c2]-3-[r9c2]=3=[r9c5]-3-[r4c5]
=> empty cell r4c5 => r3c7<>8
- Code: Select all
5. [r2c7]{=7=[r1c8](=2=[r3c8])
-7-[r1c6]-8-[r1c3]}
{-8-[r9c7]=8=[r9c8]=4=[r7c8](-4-[r7c23])
=9=[r7c9]-9-[r12c9]=9=[r3c7](-9-[r3c1])
-9-[r3c4]=9=[r2c4]
-9-[r2c1]=9=[r1c1]=1=[r1c2](-1-[r9c2])
-1-[r7c2](=1=[r9c1])
-3-[r7c3]-6-[r1c3]}
=7=[r1c8]=2=[r1c5]-2-[r2c46]=2=[r2c3]-2-[r8c3]=2=[r9c2]=4=[r8c3]-4-[r1c3]
=> empty cell r1c3 => r2c7<>8
- Code: Select all
6. [r2c7](-6-[r2c1])
{=7=[r1c8](=2=[r3c8])
-7-[r1c6]-8-[r3c4]=8=[r3c2]=3=[r3c1]-3-[r56c1]}
-6-[r3c7]-9-[r3c4]=9=[r2c4]-9-[r2c1](-4-[r6c1])
-4-[r5c1]-5-[r6c1]
=> empty cell r6c1 => r2c7<>6 => r2c7=7
- Code: Select all
7. [r2c9](-9-[r7c9]=9=[r7c8])
{-9-[r2c4]=9=[r3c4](-9-[r3c1])
=5=[r3c5]-5-[r7c5]=5=[r7c6]}
-9-[r2c1]=9=[r1c1]=1=[r1c2]-1-[r7c2]
=> no candidates of 1 in row 7 => r2c9<>9
- Code: Select all
8. [r2c4](-2-[r5c4]=2=[r5c6]-2-[r8c6])
(=9=[r2c1])
{=9=[r3c4]-9-[r3c7](-6-[r2c9])
(-6-[r3c4])
(-6-[r3c5]=6=[r1c5]-6-[r1c1])
-6-[r3c1]=6=[r9c1]-6-[r9c4]=6=[r8c4]-6-[r8c79]}
-2-[r2c6]-8-[r2c9]-4-[r8c9](-3-[r8c7])
-3-[r8c6]-1-[r8c7]
=> empty cell r8c7 => r2c4<>2
- Code: Select all
9. [r7c2](-3-[r46c2])
(-3-[r9c12])
-3-[r3c2]=3=[r3c1]-3-[r56c1]=3=[r5c3](-3-[r5c679])
=8=[r46c2]
-8-[r3c2](-2-[r3c8]=2=[r1c8])
-2-[r9c2](=2=[r8c3])
=2=[r9c5](-2-[r13c5]=2=[r2c6]-2-[r5c6]=2=[r5c4])
=3=[r9c7]-3-[r6c7]=3=[r4c9]-3-[r4c56]
=3=[r6c5]=4=[r6c4](-4-[r89c4]=4=[r7c5]-4-[r7c38])
-4-[r6c12]=4=[r5c1]-4-[r9c1]=4=[r9c2]-4-[r9c8]
=> no candidates of 4 in column 8 => r7c2<>3
- Code: Select all
10. [r9c7](-6-[r9c4])
-6-[r3c7](-9-[r6c7]=9=[r6c8]-9-[r7c8]=9=[r7c9]-9-[r1c9])
(-9-[r3c1])
-9-[r3c4]=9=[r2c4]-9-[r2c1]=9=[r1c1]
=1=[r1c2](-1-[r9c2])
-1-[r7c2]{=1=[r9c1]-1-[r9c4](-4-[r9c58])
-4-[r8c4]}
(-4-[r7c5]=4=[r6c5]-4-[r6c12])
-4-[r7c8]=4=[r8c9]-4-[r12c9]=4=[r1c8]=2=[r3c8]
-2-[r3c2]=2=[r2c3](-2-[r2c6]-8-[r2c9])
=4=[r2c1]-4-[r5c1]=4=[r5c3]=8=[r1c3]-8-[r1c9]-6-[r2c9]
=> empty cell r2c9 => r9c7<>6
- Code: Select all
11. [r2c4](=9=[r2c1])
(-8-[r2c9])
(-8-[r2c6]-2-[r8c6])
=9=[r3c4]-9-[r3c7](-6-[r2c9]-4-[r8c9])
(-6-[r3c5]=6=[r1c5]-6-[r1c1])
-6-[r3c1]=6=[r9c1]-6-[r9c4]=6=[r8c4](-6-[r8c7])
-6-[r8c9](-3-[r8c7])
-3-[r8c6]-1-[r8c7]
=> empty cell r8c7 => r2c4<>8
- Code: Select all
12. [r3c1](=3=[r3c2]-3-[r9c2])
-6-[r3c7](=6=[r8c7]-6-[r8c39])
(-9-[r1c9])
-9-[r3c4]=9=[r2c4]-9-[r2c1]=9=[r1c1]
=1=[r1c2]{-1-[r79c2]=1=[r9c1](=6=[r7c3])
=3=[r8c3]-3-[r8c9]}
=2=[r2c3](-2-[r2c6]-8-[r2c9])
=8=[r1c3](-8-[r1c9])
=4=[r2c1]-4-[r2c9]-6-[r1c9]-4-[r8c9]
=> empty cell r8c9 => r3c1<>6
- Code: Select all
13. [r7c9](-3-[r7c3])
(-3-[r45c9])
(-3-[r8c9])
=9=[r7c8]-9-[r6c8]=9=[r6c7]=3=[r5c7]-3-[r5c3]=3=[r8c3]=2=[r9c2]-2-[r13c2]=2=[r2c3]
-2-[r2c6](-8-[r2c9])
-8-[r1c6]-7-[r5c6]=7=[r5c8]=1=[r4c8]=6=[r4c9](-6-[r2c9])
-6-[r8c9]-4-[r2c9]
=> empty cell r2c9 => r7c9<>3
- Code: Select all
14. [r2c4](-6-[r1c5])
=9=[r3c4]{=5=[r3c5](-5-[r4c5])
-5-[r7c5]=5=[r7c6]
(Nice Loop: [r9c2]=2=[r9c5]=6=[r7c5]=3=[r7c3]-3-[r9c2])-3-[r9c3]}
(-9-[r3c7]=9=[r6c7])
-9-[r3c1](-3-[r56c1]-4-[r5c3])
-3-[r9c1]=3=[r78c3]-3-[r5c3](-8-[r4c2])
-8-[r5c7]=8=[r9c7]
=3=[r9c5](-3-[r4c5])
-3-[r6c5]=3=[r6c2]-3-[r4c2]-7-[r4c5]
=> empty cell r4c5 => r2c4<>6 => r2c4=9
- Code: Select all
15. [r2c9](-6-[r2c1]-4-[r56c1])
-6-[r3c7]-9-[r3c1](-3-[r6c1])
-3-[r5c1]-5-[r6c1]
=> empty cell r6c1 => r2c9<>6
=> Box line reduction in row 1,3 r1c1,r1c3<>6
- Code: Select all
16. [r1c8](=2=[r3c8]-2-[r3c2]=2=[r2c3]-2-[r8c3])
(-6-[r4c8]=6=[r4c9]=5=[r5c9]=3=[r8c9]-3-[r8c3])
-6-[r3c7](=6=[r8c7]-6-[r8c3]-4-[r7c2])
-9-[r3c1]=9=[r1c1]=1=[r1c2]-1-[r7c2]
=> empty cell r7c2 => r1c8<>6
- Code: Select all
17. [r5c6](-7-[r5c8])
-7-[r1c6]=7=[r1c5]=6=[r1c9](-6-[r3c7])
-6-[r4c9]=6=[r4c8]=7=[r6c8]=9=[r6c7]-9-[r3c7]
=> empty cell r3c7 => r5c6<>7
- Code: Select all
18. [r9c7](-1-[r9c1]=1=[r1c1]=9=[r3c1]=3=[r3c2])
{=8=[r9c8]-8-[r3c8]=8=[r3c4]-8-[r2c6](-2-[r8c6])
-2-[r5c6]=2=[r5c4]}
-1-[r79c8]=1=[r4c8]-[r4c46]=1=[r5c6]-1-[r8c6]-3-[r8c79]
=> no candidates of 3 in box 9 => r9c7<>1
=> XYZ-wing r69c78, r5c7<>8
- Code: Select all
19. [r7c6]{-1-[r8c46]=1=[r8c7]-1-[r5c7](-3-[r45c9])
=1=[r4c8]-1-[r4c46]}
-1-[r5c6]=1=[r5c4]=2=[r5c6]-2-[r8c6]-3-[r8c9]
=> no candidates of 3 in column 9 => r7c6<>1
=> Empty Rechtangle in box 8, r5c4<>1
- Code: Select all
20. [r2c9]-8-[r6c8](-9-[r13c8])
-9-[r7c8]=9=[r7c9]-9-[r1c9]=9=[r3c7]-3-[r3c1]=9=[r1c1]=1=[r1c2]
-1-[r7c2]-4-[r7c89]=4=[r8c9]-4-[r12c9]=4=[r1c8]=2=[r3c8]-2-[r3c2]=2=[r2c3]
-2-[r2c6]-8-[r2c9]
=> Empty cell r2c9 => r9c8<>8
=> r9c7=8
=> Pointing pair in row 8, r8c3,r8c6<>3
- Code: Select all
21. [r6c2](-4-[r56c1])
=7=[r4c2]=8=[r5c3]-8-[r12c3]=8=[r3c2]=3=[r3c1](-3-[r6c1])
-3-[r5c1]-5-[r6c1]
=> Empty cell r6c1 => r6c2<>4
- Code: Select all
22. [r1c2](-4-[r1c9])
(-4-[r1c3]-8-[r1c89])
=1=[r1c1]=9=[r3c1](=3=[r3c2]=2=[r2c3]-2-[r2c6]-8-[r2c9]=8=[r3c8]-8-[r6c8])
-9-[r3c7]-6-[r1c9]-9-[r6c9]=9=[r7c8]-9-[r6c8]
=> Empty cell r6c8 => r1c2<>4
=> Box-line reduction column 1,3 r7c3,r8c3,r9c1<>4
23. [r8c4]-1-[r8c6]-2-[r2c6]-8-[r2c9]-4-[r8c9]=4=[r8c4] => r8c4<>1
=> X-wing r58c67 r4c6<>1
24. [r8c7]-1-[r8c6]-2-[r8c3]=2=[r9c2]=4=[r7c2]=1=[r7c8]-1-[r8c7] => r8c7<>1
=> Singles r8c6=1, r4c1=1, r5c7=1
25. [r2c6]-8-[r2c9]-4-[r8c9]=4=[r8c4]=2=[r5c4]-2-[r5c6]=2=[r2c6] => r2c6<>8
=> One pointing pair and singles solves the rest of the puzzle
This puzzle is harder than "Emilys Friend". Probably it is at the level of dukuso no. 77.
/Viggo