- Code: Select all
*-----------*
|.2.|1..|.9.|
|3..|.4.|..8|
|..6|...|2..|
|---+---+---|
|5..|7.3|.8.|
|...|.1.|...|
|.1.|4.6|..9|
|---+---+---|
|..8|...|9..|
|7..|.5.|..3|
|.4.|..1|.6.|
*-----------*
Play/Print this puzzle online
*-----------*
|.2.|1..|.9.|
|3..|.4.|..8|
|..6|...|2..|
|---+---+---|
|5..|7.3|.8.|
|...|.1.|...|
|.1.|4.6|..9|
|---+---+---|
|..8|...|9..|
|7..|.5.|..3|
|.4.|..1|.6.|
*-----------*
+------------------------+------------------------+-------------------------+
| 48 2 457 | 1 3678 578 | 3567 9 567 |
| 3 57 19 | 2569 4 2579 | 1567 157 8 |
| a19 578 6 | 3589 3789 5789 | 2 13457 1457 |
+------------------------+------------------------+-------------------------+
| 5 69 249 | 7 29 3 | 146 8 1246 |
| 4689-2 378 23479 | 2589 1 2589 | 3467 2347 2467 |
| 8-2 1 37 | 4 28 6 | 357 357 9 |
+------------------------+------------------------+-------------------------+
| a126 35 8 | 236 2367 247 | 9 12457 12457 |
| 7 b69 19-2 | 2689 5 2489 | 148 124 3 |
|ba29 4 35 | 2389 23789 1 | 578 6 257 |
+------------------------+------------------------+-------------------------+
.------------------------.-------------------.--------------------.
| c(48) 2 457 | 1 3678 578 | 3567 9 567 |
| 3 57 19 | 2569 4 2579 | 1567 157 8 |
| 19 578 6 | 3589 3789 5789 | 2 13457 1457 |
:------------------------+-------------------+--------------------:
| 5 69 249 | 7 29 3 | 146 8 1246 |
| a[6]9-248 378 23479 | 2589 1 2589 | 3467 2347 2467 |
| c(28) 1 37 | 4 28 6 | 357 357 9 |
:------------------------+-------------------+--------------------:
| b126 35 8 | 236 2367 247 | 9 12457 12457 |
| 7 b69 129 | 2689 5 2489 | 148 124 3 |
| c(2)9 4 35 | 2389 23789 1 | 578 6 257 |
'------------------------'-------------------'--------------------'
*--------------------------------------------------------------------*
| 48 2 457 | 1 3678 578 | 34567 9 4567 |
| 3 d579 d1579 | 2569 4 2579 | 1567 157 8 |
|c1489 d5789 6 | 3589 3789 5789 | 2 13457 1457 |
*----------------------+----------------------+----------------------|
| 5 6-9 249 | 7 a29 3 | 146 8 1246 |
| 24689 36789 23479 | 2589 1 2589 | 34567 23457 24567 |
|b28 1 237 | 4 a28 6 | 357 2357 9 |
*----------------------+----------------------+----------------------|
|b126 356 8 | 236 2367 247 | 9 12457 12457 |
| 7 a69 129 | 2689 5 2489 | 148 124 3 |
|b29 4 2359 | 2389 23789 1 | 578 6 257 |
*--------------------------------------------------------------------*
+-----------------------+-----------------------+------------------------+
| 48 2 457 | 1 3678 578 | 3567 9 567 |
| 3 57 c19 | 2569 4 2579 | 1567 157 8 |
|d19 578 6 | 3589 3789 5789 | 2 13457 1457 |
+-----------------------+-----------------------+------------------------+
| 5 69 a249 | 7 29 3 | 146 8 1246 |
| 24689 378 a23479 | 2589 1 2589 | 3467 2347 2467 |
| 8-2 1 37 | 4 28 6 | 357 357 9 |
+-----------------------+-----------------------+------------------------+
| 126 35 8 | 236 2367 247 | 9 12457 12457 |
| 7 69 b129 | 2689 5 2489 | 148 124 3 |
|e29 4 35 | 2389 23789 1 | 578 6 257 |
+-----------------------+-----------------------+------------------------+
Cenoman wrote:(2=196)r379c1 - (6=92)b7p57 => -2 r56c1, r8c3; ste (ste from -2r6c1 alone)
SteveG48 wrote:I neglected to do the basics, and got this:
(9=268)r46c5,r8c2 - (6|8=129)r679c1 - (1|9)r3c1 = (19)b1p568 => -9 r4c2 ; stte
eleven wrote:Cenoman wrote:(2=196)r379c1 - (6=92)b7p57 => -2 r56c1, r8c3; ste (ste from -2r6c1 alone)
It's a wxyz-wing: 1269 in 4 cells, only 9 can be twice (r3c1 and r8c2).
9r8c2 -> 2r9c1 => 2r79c1
SpAce wrote:Hi eleven,eleven wrote:Cenoman wrote:(2=196)r379c1 - (6=92)b7p57 => -2 r56c1, r8c3; ste (ste from -2r6c1 alone)
It's a wxyz-wing: 1269 in 4 cells, only 9 can be twice (r3c1 and r8c2).
9r8c2 -> 2r9c1 => 2r79c1
I don't know what the truth is, but last time I offered a similar overlapping pattern as a WXYZ-Wing it got questioned! SudokuWiki doesn't recognize it as such either (not that it means much, but it's the only solver I know that has WXYZ-Wing). What is the actual definition?
SpAce wrote:What is the actual definition?
eleven wrote:@Rjamil: StrCkr says in his "Collary" (probably corollary):
"WXYZ-Wings can be considered as a group of 4 cells and 4 digits, that has exactly one non-restricted common digit."
As i understand it, this would fit here for the 9.
Personally i use the definition, that all groups of 4 cells and 4 digits in a box plus a line, which eliminate outside digits, can be called wxyz-wings. At least that fits for all so-called wxyz-wings i saw.