- Code: Select all
*-----------*
|..9|1..|8.7|
|...|.28|.5.|
|1..|5..|...|
|---+---+---|
|.35|7..|91.|
|8.2|3.1|...|
|9..|...|2..|
|---+---+---|
|.2.|..9|1..|
|...|21.|5.8|
|..1|.43|.92|
*-----------*
Play/Print this puzzle online
*-----------*
|..9|1..|8.7|
|...|.28|.5.|
|1..|5..|...|
|---+---+---|
|.35|7..|91.|
|8.2|3.1|...|
|9..|...|2..|
|---+---+---|
|.2.|..9|1..|
|...|21.|5.8|
|..1|.43|.92|
*-----------*
.-----------------------.---------------.------------------.
| 2 5 9 | 1 3 46+ | 8 46+ 7 |
| 3467 467 346 | 9 2 8 | c46+3 5 1 |
| 1 ac46[+8] b3468 | 5 7 46+ | b346 2 9 |
:-----------------------+---------------+------------------:
| 46 3 5 | 7 8 2 | 9 1 46 |
| 8 46+ 2 | 3 9 1 | d46+7 467 5 |
| 9 1 7 | 4 6 5 | 2 8 3 |
:-----------------------+---------------+------------------:
| 3467 2 3468 | 68 5 9 | 1 3467 46 |
| 346 9 346 | 2 1 7 | 5 346 8 |
| 5 67-8 1 | e(68) 4 3 | e(6)7 9 2 |
'-----------------------'---------------'------------------'
.---------------------.---------------.------------------.
| 2 5 9 | 1 3 46+ | 8 46+ 7 |
| 3467 467 346 | 9 2 8 | 346+ 5 1 |
| 1 a46[+8] 3468 | 5 7 46+ | 346+ 2 9 |
:---------------------+---------------+------------------:
| 46 3 5 | 7 8 2 | 9 1 46 |
| 8 46+ 2 | 3 9 1 | 46+7 467 5 |
| 9 1 7 | 4 6 5 | 2 8 3 |
:---------------------+---------------+------------------:
| 3467 2 3468 | 68 5 9 | 1 3467 46 |
| 346 9 346 | 2 1 7 | 5 346 8 |
| 5 67-8 1 | b(68) 4 3 | b7(#6) 9 2 |
'---------------------'---------------'------------------'
*------------------------------------------------------------*
| 2 5 9 | 1 3 d46 | 8 d46 7 |
| 3467 467 346 | 9 2 8 | 346 5 1 |
| 1 acd468 3468 | 5 7 d46 | 346 2 9 |
*-------------------+-------------------+--------------------|
| 46 3 5 | 7 8 2 | 9 1 d46 |
| 8 d46 2 | 3 9 1 |cd467 467 5 |
| 9 1 7 | 4 6 5 | 2 8 3 |
*-------------------+-------------------+--------------------|
| 3467 2 3468 | 68 5 9 | 1 e3467 d46 |
| 346 9 346 | 2 1 7 | 5 e346 8 |
| 5 b67-8 1 |f68 4 3 |bf67 9 2 |
*------------------------------------------------------------*
SteveG48 wrote:8r3c2 = (78)r9c27 - (7|8)r3c2,r5c7 = [46RP r1c68,r3c26,r4c9,r5c27,r7c9] - (4|6=37)r78c8 - (7=68)r9c47 => -8 r9c2 ; stte
Hmm. Essentially the same as SpAce.
SpAce wrote:In other words, that RP is in fact a DP itself (with two guardians: 8r3c2 & 7r5c7), and that realization resulted in my new simplified solution (edited above). So, thanks for that!
*-----------------------------------------------------------*
| 2 5 9 | 1 3 46 | 8 46 7 |
| #346+7 467 #346 | 9 2 8 | #346 5 1 |
| 1 #46+8 3468 | 5 7 46 | 346 2 9 |
|----------------------+---------------+--------------------|
| 46 3 5 | 7 8 2 | 9 1 46 |
| 8 #46 2 | 3 9 1 | #46+7 467 5 |
| 9 1 7 | 4 6 5 | 2 8 3 |
|----------------------+---------------+--------------------|
| 3467 2 3468 | 68 5 9 | 1 3467 46 |
| 346 9 346 | 2 1 7 | 5 346 8 |
| 5 b678 1 | 68 4 3 | a67 9 2 |
*-----------------------------------------------------------*
eleven wrote:Yet another 46 DP (5-link grouped bivalue oddagon)
DP 46(r2c137,r3c2,r5c27), guardians 7r2c1,r5c7, 8r3c2
the 7 guardians imply -7r2c2 (r6c7 via r9c7, r9c2), 46r25c2 and 8r3c2.
=> 8r3c2