October 11, 2019

Post puzzles for others to solve here.

October 11, 2019

Postby ArkieTech » Fri Oct 11, 2019 11:40 am

Code: Select all
 *-----------*
 |...|.56|8..|
 |..1|2..|.9.|
 |.84|...|..5|
 |---+---+---|
 |45.|...|..3|
 |7..|...|.46|
 |...|...|.1.|
 |---+---+---|
 |8..|...|23.|
 |.3.|..1|...|
 |..7|9..|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: October 11, 2019

Postby SpAce » Fri Oct 11, 2019 1:12 pm

Code: Select all
.----------.--------------------.-------------.
| 9  7  3  |  1     5     6     |   8    2  4 |
| 5  6  1  |  2     48    48    |   3    9  7 |
| 2  8  4  | c3(7)  379   379   |   1    6  5 |
:----------+--------------------+-------------:
| 4  5  26 |  6-7   1     29-7  | a[7]9  8  3 |
| 7  1  28 | b35    389   23589 |   59   4  6 |
| 3  9  68 |  4     678  b578   |  a57   1  2 |
:----------+--------------------+-------------:
| 8  4  9  |  567   67   c5(7)  |   2    3  1 |
| 6  3  5  |  8     2     1     |   4    7  9 |
| 1  2  7  |  9     34    34    |   6    5  8 |
'----------'--------------------'-------------'

(75)r46c7 = (53)b5p94 - (5|3=7)r7c6&r3c4 => -7 r4c46; stte
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: October 11, 2019

Postby ArkieTech » Fri Oct 11, 2019 2:57 pm

SpAce wrote:
Code: Select all
.----------.--------------------.-------------.
| 9  7  3  |  1     5     6     |   8    2  4 |
| 5  6  1  |  2     48    48    |   3    9  7 |
| 2  8  4  | c3(7)  379   379   |   1    6  5 |
:----------+--------------------+-------------:
| 4  5  26 |  6-7   1     29-7  | a[7]9  8  3 |
| 7  1  28 | b35    389   23589 |   59   4  6 |
| 3  9  68 |  4     678  b578   |  a57   1  2 |
:----------+--------------------+-------------:
| 8  4  9  |  567   67   c5(7)  |   2    3  1 |
| 6  3  5  |  8     2     1     |   4    7  9 |
| 1  2  7  |  9     34    34    |   6    5  8 |
'----------'--------------------'-------------'

(75)r46c7 = (53)b5p94 - (5|3=7)r7c6&r3c4 => -7 r4c46; stte



Nice 8-)
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: October 11, 2019

Postby Ngisa » Fri Oct 11, 2019 3:55 pm

Code: Select all
+----------------+-----------------------+----------------+
| 9     7     3  |  1      5       6     | 8      2     4 |
| 5     6     1  |  2      48      48    | 3      9     7 |
| 2     8     4  | b37    c37*9    379   | 1      6     5 |
+----------------+-----------------------+----------------+
| 4     5     26 | b67     1       279   |f7-9    8     3 |
| 7     1     28 | a35     389     23589 |a59     4     6 |
| 3     9     68 |  4     d678     578   |e57     1     2 |
+----------------+-----------------------+----------------+
| 8     4     9  |bc567   c67*     57    | 2      3     1 |
| 6     3     5  |  8      2       1     | 4      7     9 |
| 1     2     7  |  9      34      34    | 6      5     8 |
+----------------+-----------------------+----------------+

(9=53)r5c47 - (3=765)r347c4 - (7*)r3c5&(67*)r7c45 = (7)r6c5 - r6c7 = (7)r4c7 => 9r4c7; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: October 11, 2019

Postby Cenoman » Fri Oct 11, 2019 4:21 pm

SpAce wrote:(75)r46c7 = (53)b5p94 - (5|3=7)r7c6&r3c4 => -7 r4c46; stte
Tricky and nice !

An almost one-step AIC:
Code: Select all
 +-----------------+----------------------+-----------------+
 |  9    7    3    |  1     5     6       |  8    2    4    |
 |  5    6    1    |  2     48    48      |  3    9    7    |
 |  2    8    4    |  37    379   379     |  1    6    5    |
 +-----------------+----------------------+-----------------+
 |  4    5    26   | g6-7   1     29-7    | a79   8    3    |
 |  7    1    28   |  35    389   23589   |  59   4    6    |
 |  3    9    68   |  4    f678  c578     | b57   1    2    |
 +-----------------+----------------------+-----------------+
 |  8    4    9    |  567  e67   d57      |  2    3    1    |
 |  6    3    5    |  8     2     1       |  4    7    9    |
 |  1    2    7    |  9     34    34      |  6    5    8    |
 +-----------------+----------------------+-----------------+

(7)r4c7 = (7-5)r6c7 = r6c6 - (5=7)r7c6* - (7=6)r7c5 - r7c4 = (6)r4c4 => -7 r4c4, r4c6*; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: October 11, 2019

Postby eleven » Fri Oct 11, 2019 6:01 pm

Code: Select all
 *--------------------------------------------------*
 |  9  7  3    |  1     5     6       |  8    2  4  |
 |  5  6  1    |  2     48    48      |  3    9  7  |
 |  2  8  4    |  37    379   379     |  1    6  5  |
 |-------------+----------------------+-------------|
 |  4  5  26   | a67    1     29-7    |  79   8  3  |
 |  7  1  28   |  35    389   23589   |  59   4  6  |
 |  3  9 b68   |  4    b78-6 b578     |  57   1  2  |
 |-------------+----------------------+-------------|
 |  8  4  9    |  567  c67   c57      |  2    3  1  |
 |  6  3  5    |  8     2     1       |  4    7  9  |
 |  1  2  7    |  9     34    34      |  6    5  8  |
 *--------------------------------------------------*

(6=7)r4c4 - (7=5)r6c356 - (5=76)r7c65 => -6r6c5,-7r4c6; stte
Better (6,7)r3c4,r6c56 = 5r6c356 - (5=76)r7c56 ?
[Edit: corrected typo, thanks Cenoman]
Last edited by eleven on Fri Oct 11, 2019 9:23 pm, edited 1 time in total.
eleven
 
Posts: 3152
Joined: 10 February 2008

Re: October 11, 2019

Postby SpAce » Fri Oct 11, 2019 8:32 pm

ArkieTech wrote:Nice 8-)

Cenoman wrote:Tricky and nice !

Thanks, guys! Not really sure if the last term is strictly speaking correct as written, but I'm glad it got understood anyway :)
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: October 11, 2019

Postby SpAce » Fri Oct 11, 2019 8:43 pm

eleven wrote:(6=7)r3c4 - (7=5)r6c356 - (5=76)r7c65 => -6r6c5,-7r4c6; stte
Better (6,7)r3c4,r6c56 = 5r6c356 - (5=76)r7c56 ?

Hi eleven! I really like the logic, but both of those are a bit hard to read (for me). I also can't seem to find much better notations for the exact same logic. I found this instead:

(67)r4c47 = (7,5)r6c76 - (5=76)r7c65 => -6 r6c5,r7c4, -7 r4c6

Would that work for you?
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: October 11, 2019

Postby ArkieTech » Fri Oct 11, 2019 9:04 pm

eleven wrote:
Code: Select all
 *--------------------------------------------------*
 |  9  7  3    |  1     5     6       |  8    2  4  |
 |  5  6  1    |  2     48    48      |  3    9  7  |
 |  2  8  4    |  37    379   379     |  1    6  5  |
 |-------------+----------------------+-------------|
 |  4  5  26   | a67    1     29-7    |  79   8  3  |
 |  7  1  28   |  35    389   23589   |  59   4  6  |
 |  3  9 b68   |  4    b78-6 b578     |  57   1  2  |
 |-------------+----------------------+-------------|
 |  8  4  9    |  567  c67   c57      |  2    3  1  |
 |  6  3  5    |  8     2     1       |  4    7  9  |
 |  1  2  7    |  9     34    34      |  6    5  8  |
 *--------------------------------------------------*

(6=7)r3c4 - (7=5)r6c356 - (5=76)r7c65 => -6r6c5,-7r4c6; stte
Better (6,7)r3c4,r6c56 = 5r6c356 - (5=76)r7c56 ?



[(7|6=5)r4c4,r6c356-(5=76)r7c65]-7r4c6,-6r6c5; ste
??
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: October 11, 2019

Postby eleven » Fri Oct 11, 2019 9:08 pm

SpAce wrote:(67)r4c47 = (7,5)r6c76 - (5=76)r7c65 => -6 r6c5,r7c4, -7 r4c6

Would that work for you?

Nice, too (like your first one).
eleven
 
Posts: 3152
Joined: 10 February 2008

Re: October 11, 2019

Postby Cenoman » Fri Oct 11, 2019 9:29 pm

SpAce wrote: Not really sure if the last term is strictly speaking correct as written, but I'm glad it got understood anyway :)

Don't know either if the last term is not correct as written. The ste finish needs both eliminations, therefore the last node in this last term shall be (7)r7c6&r3c4.
Not obvious how to interpret the middle weak link: (53)b5p94 - (5|3)r7c6&r3c4
it got understood anyway
Sure, but not easily.
As I often do, I have rewritten it my way
Code: Select all
(7)r4c7 = (7-5)r6c7 =  (5)r6c6  - (5=3)r5c4 - (3=7)r3c4
                                              \ (5=7)r7c6

You chose to group the term (5=3)r5c4 with 5r6c6. I would group it with (3=7)r3c4, getting the ALS (5=37)r35c4.
For once, if you accept to omit the bystander you could write the whole thing (7)r4c7 = (7-5)r6c7 = (5)r6c6 - (5=7)r35c4&r7c6

Side remark: not easy to put this double chain into a matrix.
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: October 11, 2019

Postby SteveG48 » Fri Oct 11, 2019 9:32 pm

Code: Select all
 *---------------------------------------------------------------------*
 | 9      7      3      | 1      5      6      |  8      2      4      |
 | 5      6      1      | 2      48     48     |  3      9      7      |
 | 2      8      4      | 37     379    379    |  1      6      5      |
 *----------------------+----------------------+-----------------------|
 | 4      5      26     | 67     1     c279    |  79     8      3      |
 | 7      1      28     |c35    c389   c23589  |  59     4      6      |
 | 3      9      68     | 4     c678    78-5   |ab57     1      2      |
 *----------------------+----------------------+-----------------------|
 | 8      4      9      | 567   b67   ab57     |  2      3      1      |
 | 6      3      5      | 8      2      1      |  4      7      9      |
 | 1      2      7      | 9      34     34     |  6      5      8      |
 *---------------------------------------------------------------------*


5r6c7,r7c6 = 7r6c7&(67)r7c56 - (6|7=23895)b5p34568 => -5 r6c6 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: October 11, 2019

Postby SteveG48 » Fri Oct 11, 2019 9:56 pm

SpAce wrote:Thanks, guys! Not really sure if the last term is strictly speaking correct as written, but I'm glad it got understood anyway :)


I like your solution too.

If we try to expand the last term, it gets awkward, so I'd split it into two: 5r7c6|3r3c4 = 7r7c6&r3c4 .
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: October 11, 2019

Postby Cenoman » Fri Oct 11, 2019 9:59 pm

eleven wrote:(6=7)r4c4 - (7=5)r6c356 - (5=76)r7c65 => -6r6c5,-7r4c6; stte
Better (6,7)r4c4,r6c56 = 5r6c356 - (5=76)r7c56 ?

Same kind of comments. This is hard to read. Both eliminations are needed for the ste finish.
I'd stick to the developed form: (6=7)r4c4 - *(7=685)r6c356 - (5=7)r7c6* - (7=6) r7c5 => -7 r4c6*, -6 r6c5
Just a matter of taste and colours...

Same side remark as to SpAce: this chain with embedded subchain is hard to put into a matrix (as well as my own, BTW)
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: October 11, 2019

Postby SpAce » Fri Oct 11, 2019 11:14 pm

Cenoman wrote:Don't know either if the last term is not correct as written. The ste finish needs both eliminations, therefore the last node in this last term shall be (7)r7c6&r3c4.
Not obvious how to interpret the middle weak link: (53)b5p94 - (5|3)r7c6&r3c4

SteveG48 wrote:If we try to expand the last term, it gets awkward, so I'd split it into two: 5r7c6|3r3c4 = 7r7c6&r3c4 .

I hear both of you. I knew it was questionable when I wrote it, but did it anyway for aesthetic reasons 8-) But, like Cenoman, I'm not really sure if it's truly incorrect either. Seems more like undefined (which I guess is pretty much the same thing, though).

Cenoman wrote:You chose to group the term (5=3)r5c4 with 5r6c6. I would group it with (3=7)r3c4, getting the ALS (5=37)r35c4.

I actually used that grouping in my first draft:

(7)r4c7 = (7,5)r6c76 - (5)r5c4|r7c6 = (37)r53c4&(7)r7c6 => -7 r4c46

For once, if you accept to omit the bystander you could write the whole thing (7)r4c7 = (7-5)r6c7 = (5)r6c6 - (5=7)r35c4&r7c6

Uncharacteristically, I did consider that, too! It's actually what got me thinking about using the questionable &-term at the end.

Side remark: not easy to put this double chain into a matrix.

Yes, it's often the case with these when you need an ANDed end point. This doesn't seem like the worst of its kind, though:

Code: Select all
 7r4c7       7r6c7
             5r6c7 5r6c6
                   5r5c4 3r5c4
 7r7c6&7r3c4       5r7c6 3r3c4
------------------------------
-7r4c46

Would you accept that?
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Next

Return to Puzzles