October 11, 2016

Post puzzles for others to solve here.

October 11, 2016

Postby ArkieTech » Mon Oct 10, 2016 11:12 pm

Code: Select all
 *-----------*
 |...|8..|97.|
 |2..|..5|6..|
 |...|.2.|.1.|
 |---+---+---|
 |.5.|9..|...|
 |.46|.7.|89.|
 |...|..1|.2.|
 |---+---+---|
 |.7.|.1.|...|
 |..9|3..|..6|
 |.18|..6|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: October 11, 2016

Postby pjb » Tue Oct 11, 2016 12:18 am

Code: Select all
 5       3       1      | 8      6      4      | 9      7      2     
 2       89      7      | 1    cC3-9e   5      | 6      348    348   
 89      6       4      | 7      2     b39     |a35     1      358   
------------------------+----------------------+---------------------
 78      5       2      | 9     B348    38     |A347    6      1     
 1       4       6      | 25     7      23     | 8      9      35     
 789     89      3      | 6      458    1      | 457    2      457   
------------------------+----------------------+---------------------
 6       7       5      | 24     1      289    | 234a   348    3489   
 4       2       9      | 3      58     7      | 1      58     6     
 3       1       8      | 245    59d    6      | 247b   45     479c   

(3)r3c7 - (3=9)r3c6 - r2c5
(3)r4c7 - r4c5 = (3-9)r2c5
(3-2)r7c7 = (2-7)r9c7 = (7-9)r9c9 = r9c5 - r2c5 => -9 r2c5; stte

or linear:
(3=9)r2c5 - (9=8)r2c2 - r2c8 = r3c9* - (8=9)r3c1 - r3c6 = r7c6^ - (9=5)r9c5 - (5=8)r8c5 - (8=5)r8c8 - (5=4)r9c8# - (489=3)r7c9*^# - r5c9 = (3)r4c7 => -3 r4c5; stte

Phil
Last edited by pjb on Tue Oct 11, 2016 1:38 am, edited 1 time in total.
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: October 11, 2016

Postby SteveG48 » Tue Oct 11, 2016 12:37 am

Code: Select all
 *-----------------------------------------------------------*
 | 5     3     1     | 8     6     4     | 9     7     2     |
 | 2     89    7     | 1    a39    5     | 6     348  d348   |
 | 89    6     4     | 7     2   bc9-3   |c35    1    d358   |
 *-------------------+-------------------+-------------------|
 | 78    5     2     | 9     48-3  38    | 347   6     1     |
 | 1     4     6     | 25    7    f23    | 8     9    e35    |
 | 789   89    3     | 6     458   1     | 457   2     457   |
 *-------------------+-------------------+-------------------|
 | 6     7     5     | 24    1     289   | 234   348  d3489  |
 | 4     2     9     | 3     58    7     | 1     58    6     |
 | 3     1     8     | 245  b59    6     | 247   45   c479   |
 *-----------------------------------------------------------*


(3=9)r2c5 - (9r3c6)|(9r9c5) = (35r3c67)&(9r9c9) - (5|9=348)r237c9 - 3r5c9 = 3r5c6 => -3 r3c6,r4c5 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4504
Joined: 08 November 2013
Location: Orlando, Florida

Re: October 11, 2016

Postby Leren » Tue Oct 11, 2016 5:05 am

Code: Select all
*-----------------------------------------------------------------------*
| 5      3      1       | 8      6      4       | 9      7      2       |
| 2      89     7       | 1      3-9    5       | 6      348    348     |
| 89     6      4       | 7      2      39a     | 35a    1      358     |
|-----------------------+-----------------------+-----------------------|
| 78     5      2       | 9      348    38      | 347    6      1       |
| 1      4      6       | 25     7      23      | 8      9      35      |
| 789    89     3       | 6     a458    1       |b457bB  2      457     |
|-----------------------+-----------------------+-----------------------|
| 6      7      5       | 24     1      289     | 234    348    3489    |
| 4      2      9       | 3     a58     7       | 1      58     6       |
| 3      1      8       | 245A  a59A    6       | 247A   45A    479     |
*-----------------------------------------------------------------------*

3 Petal Death Blossom: Stem Cell r6c7 {457} :

(9=4) r689c5  - (4) r6c7;

(9=5) r3c67   - (5) r6c7;

(9=7) r9c4578 - (7) r6c7; => - 9 r2c5; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: October 11, 2016

Postby JC Van Hay » Tue Oct 11, 2016 7:57 am

Code: Select all
+------------+------------------+-------------------+
| 5    3   1 | 8    6      4    | 9      7    2     |
| 2    89  7 | 1    3-9    5    | 6      348  348   |
| 89   6   4 | 7    2      (39) | (35)   1    358   |
+------------+------------------+-------------------+
| 78   5   2 | 9    348    38   | 347    6    1     |
| 1    4   6 | 25   7      23   | 8      9    35    |
| 789  89  3 | 6    48(5)  1    | 47(5)  2    4(57) |
+------------+------------------+-------------------+
| 6    7   5 | 24   1      28-9 | 234    348  3489  |
| 4    2   9 | 3    58     7    | 1      58   6     |
| 3    1   8 | 245  (59)   6    | 247    45   4(79) |
+------------+------------------+-------------------+
"Wing" : (9=35)r3c67-5r6c7=*L3-Wing[5r6c5=*(5-7)r6c9=(7-9)r9c9=9r9c5]-(5=9)r9c5 -> -{9r2c5, 9r7c6}; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: October 11, 2016

Postby Sudtyro2 » Wed Oct 12, 2016 3:02 pm

pjb wrote:
Code: Select all
 5       3       1      | 8      6      4      | 9      7      2     
 2       89      7      | 1    cC3-9e   5      | 6      348    348   
 89      6       4      | 7      2     b39     |a35     1      358   
------------------------+----------------------+---------------------
 78      5       2      | 9     B348    38     |A347    6      1     
 1       4       6      | 25     7      23     | 8      9      35     
 789     89      3      | 6      458    1      | 457    2      457   
------------------------+----------------------+---------------------
 6       7       5      | 24     1      289    | 234a   348    3489   
 4       2       9      | 3      58     7      | 1      58     6     
 3       1       8      | 245    59d    6      | 247b   45     479c   

(3)r3c7 - (3=9)r3c6 - r2c5
(3)r4c7 - r4c5 = (3-9)r2c5
(3-2)r7c7 = (2-7)r9c7 = (7-9)r9c9 = r9c5 - r2c5 => -9 r2c5; stte
...

Phil, I could use some expert guidance and have two questions:

1. How did you go about finding the third chain?
It looks simple, but I searched for an embarrassingly long time without success.

2. When starting a chain with a false premise, can one always be guaranteed a particular desired outcome to satisfy a 'Pattern=Spoiler' strong link?
I ask this question because yesterday I had already found two 'Almost' patterns for this puzzle that could potentially give a -3r3c6 (stte) elimination, but I couldn't develop one 'Spoiler' chain and so gave up. Only later did I discover that I could continue your chain with ... - 9r2c5 = 3r2c5 - 3r3c6. Your starting digit, 3r7c7, is the key Guardian in a 3s Oddagon(r3c67,r5c69,r4c7) having Guardians r7c7,r4c6,r3c9. It's also the key remote fin in a 3s Kraken 1x1 Fish c7\r3 + rfr47c7.

BTW, regarding the second question, JC(above) once pointed out that the standard Fish=Fin strong-link rule is not always valid because the (unfinned) Fish itself can sometimes be false. I then also wondered if the chain needed for a remote fin (or an Oddagon guardian) might not even exist. Help?

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: October 11, 2016

Postby pjb » Thu Oct 13, 2016 1:19 am

Steve
My main interest has been solving hard sudokus using my own solver with my own amateurish code. I always spend as much time as I can afford solving the daily puzzle manually, but if I fail i revert to my solver. I usually focus first on DPs as this is where I have most success manually. BTW your namesake produced a lovely DP solution yesterday which I kicked myself for missing. Your question - how did I find that chain? I suppose like any other AIC - in this case I needed help from my trusty solver because 1. it was a hard puzzle, and 2. I was really short of time. You lost me on your other questions.
Cheers, Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: October 11, 2016

Postby Sudtyro2 » Thu Oct 13, 2016 10:50 am

Thx, Phil, for your comments. I think there's hope for us manual solvers, after all.

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013


Return to Puzzles