November 30, 2018

Post puzzles for others to solve here.

November 30, 2018

Postby ArkieTech » Fri Nov 30, 2018 12:08 pm

Code: Select all
 *-----------*
 |..1|...|6..|
 |.6.|3.7|.4.|
 |7..|...|..8|
 |---+---+---|
 |.5.|6.3|.8.|
 |...|...|...|
 |.3.|2.5|.1.|
 |---+---+---|
 |6..|...|..2|
 |.7.|1.9|.3.|
 |..5|...|9..|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: November 30, 2018

Postby SpAce » Fri Nov 30, 2018 12:54 pm

Code: Select all
.-----------------------.---------------------.--------------------------.
| 234589  2489   1      | 4589   24589   248  |  6        259-7   3579   |
| 2589    6      289    | 3      12589   7    |  125      4       159    |
| 7       249    2349   | 459    124569  1246 |  1235     259     8      |
:-----------------------+---------------------+--------------------------:
| 1249    5      2479   | 6      1479    3    |  247      8       479    |
| 12489   12489  246789 | 4789   14789   148  |  23457    2569-7  345679 |
| 489     3      46789  | 2      4789    5    |  47       1       4679   |
:-----------------------+---------------------+--------------------------:
| 6       1489   3489   | 4578   34578   48   |  148-57  a57      2      |
| 248     7      248    | 1     c56-248  9    | b458      3     db456    |
| 12348   1248   5      | 478    234678  2468 |  9       e67      14-67  |
'-----------------------'---------------------'--------------------------'

(7=5)r7c8 - r8c79 = (5-6)r8c5 = r8c9 - (6=7)r9c8 - Loop

=> -5 r7c7; -248 r8c5; -6 r9c9; -7 r7c7,r9c9,r15c8; stte

Or:

Doubly-Linked ALS XZ: (4=567'8)b9p2684 - (8=2'4)r8c13 - Loop => (same eliminations & -2 r9c12; stte)

Also: Sue de Coq: AANS(4568)r8c79 + ANS(248)r8c13 + ANS(567)b9p28 => -248 r8c5; -57 r7c7; -67 r9c9; lcste

PS. For all practical purposes the Sue de Coq is the same as the DL ALS XZ, but it seems to me that the standard direct eliminations of SDC are only for the box and the line included in the pattern (thus it wouldn't be a pure stte solution here). I guess the correct way to see the SDC is through subset counting instead of a loop, which in principle excludes those extra direct eliminations (although the end result is the same after locked-candidates moves). What do others think?
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: November 30, 2018

Postby SteveG48 » Fri Nov 30, 2018 3:00 pm

Code: Select all
 *-----------------------------------------------------------------------------*
 | 234589  2489    1       | 4589    24589   248     | 6       259-7   3579    |
 | 2589    6       289     | 3       12589   7       | 125     4       159     |
 | 7       249     2349    | 459     124569  1246    | 1235    259     8       |
 *-------------------------+-------------------------+-------------------------|
 | 1249    5       2479    | 6       1479    3       | 247     8       479     |
 | 12489   12489   246789  | 4789    14789   148     | 23457   2569-7  345679  |
 | 489     3       46789   | 2       4789    5       | 47      1       4679    |
 *-------------------------+-------------------------+-------------------------|
 | 6       1489    3489    | 4578    34578   48      | 1458-7 a57      2       |
 |b248     7      b248     | 1       24568   9       |b458     3      b456     |
 | 12348   1248    5       | 478     234678  2468    | 9      c67      146-7   |
 *-----------------------------------------------------------------------------*


(7=5)r7c8 - (5=2468)r8c1379 - (6=7)r9c8 => -7 r1c8,r7c7,r9c9,r5c8 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: November 30, 2018

Postby SpAce » Fri Nov 30, 2018 3:20 pm

SteveG48 wrote:(7=5)r7c8 - (5=2468)r8c1379 - (6=7)r9c8 => -7 r1c8,r7c7,r9c9,r5c8 ; stte

If you wrote "- Loop" after that, you'd get the rest of the eliminations too: -248 r8c5; -5 r7c7; -6 r9c9; -2 r9c12

Not that it matters because -7 r1c8 is all that is needed for stte.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: November 30, 2018

Postby 999_Springs » Fri Nov 30, 2018 3:29 pm

Code: Select all
 *-----------------------------------------------------------------------------*
 | 234589  2489    1       | 4589    24589   248     | 6       2579    357-9   |
 | 2589    6       289     | 3       12589   7       |A125     4      A159     |
 | 7       249     2349    | 459     124569  1246    |a1235    259     8       |
 |-------------------------+-------------------------+-------------------------|
 | 1249    5       2479    | 6       1479    3       |B247     8      B479     |
 | 12489   12489   246789  | 4789    14789   148     | 35-247  2569-7  356-479 |
 | 489     3       46789   | 2       4789    5       |B47      1       6-479   |
 |-------------------------+-------------------------+-------------------------|
 | 6       1489    3489    | 4578    34578   48      | 14578   57      2       |
 | 248     7       248     | 1       24568   9       | 458     3       456     |
 | 12348   1248    5       | 478     234678  2468    | 9       67      1467    |
 *-----------------------------------------------------------------------------*

there's probably a way to write this move as an als-chain or similar but i don't see it:

[double als xz 1259Aa; 2479B; x=2; z=9] =3=r3c7-3-r3c3=3=r1c1=5=r2c1-5-r2c79=5= [double als xz 129A; 2479B; x=2; z=9]

=> -47r5c789r6c9; -2r5c7; -9r156c9

singles and a pointing pair to end

edit: fixed notation thanks space
Last edited by 999_Springs on Fri Nov 30, 2018 4:14 pm, edited 1 time in total.
999_Springs
 
Posts: 591
Joined: 27 January 2007
Location: In the toilet, flushing down springs, one by one.

Re: November 30, 2018

Postby Ngisa » Fri Nov 30, 2018 4:01 pm

Code: Select all
+-------------------------+----------------------+-------------------------+
| 234589   2489    1      | 4589   24589    248  | 6       d2579   e579-3  |
| 2589     6       289    | 3      12589    7    | 125      4       159    |
| 7        249     2349   | 459    124569   1246 | 1235    259      8      |
+-------------------------+----------------------+-------------------------+
| 1249     5       2479   | 6      1479     3    | 247     8        479    |
| 12489    12489   246789 | 4789   14789    148  | 23457   25679    345679 |
| 489      3       46789  | 2      4789     5    | 47      1        4679   |
+-------------------------+----------------------+-------------------------+
| 6        1489    3489   | 4578   34578    48   | 14578  c57       2      |
| 248      7       248    | 1     a24568    9    |a458     3       a456    |
| 12348    1248    5      | 478    234678   2468 | 9      b67       1467   |
+-------------------------+----------------------+-------------------------+

Kraken Row [5]r8c579
(5-6)r8c5 = r8c9 - (6=7)r9c8 - r1c8 = (7-3)r1c9
(5)r8c79 - (5=7)r7c8 - r1c8 = (7-3)r1c9 => - 3r1c9; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: November 30, 2018

Postby SpAce » Fri Nov 30, 2018 4:10 pm

999_Springs wrote:there's probably a way to write this move as an als-chain or similar but i don't see it:

[double als xz 1259Aa; 2479B; x=2; z=9] =3=r3c7-3-r3c3=3=r1c1=5=r2c1-5- [double als xz 129A; 2479B; x=2; z=9]

=> -47r5c789r6c9; -2r5c7; -9r156c9

That's a brilliant move! I think you're missing one node and strong link after -5-, though. I'd write it in Eureka something like this:

[(9'47=2)b6p371 - (2=15'9)b3p476 - Loop] = (3)r3c7 - r3c3 = (3-5)r1c1 = r2c1 - r2c79 = [(9'47=2)b6p371 - (2=1'9)r2c79 - Loop]

=> -2 r5c7, -47 b6p4569, -9 r156c9; lcste
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: November 30, 2018

Postby eleven » Fri Nov 30, 2018 11:00 pm

Thanks for that move, 999_Springs.
eleven
 
Posts: 3153
Joined: 10 February 2008


Return to Puzzles