Cenoman wrote:Single digit solution
Kraken row (7)r7c1679
(7)r7c1 - r5c1 = r5c9 - r23c9 = r2c78
(7)r7c6 - r89c5 = r1c5
(7)r7c79 - r89c8 = r2c8
=> -7 r2c6; ste
Very nice! Note that 7r7c6 sees the victim directly, so you don't really need the second chain.
The same as a fish (C5\b28 replaced with c6):
- Code: Select all
.------------------.--------------.---------------------.
| 4 1 67 | 3 67 9 | 58 58 2 |
| 8 2 3679 | 5 4 6-7 | *137 **137 *379 |
| 79 5 379 | 1 2 8 | 4 6 *379 |
:------------------+--------------+---------------------:
| 5 4 2 | 7 9 36 | 368 38 1 |
| *67 8 1 | 2 56 356 | 9 4 *367 |
| 3 679 79 | 4 8 1 | 67 2 5 |
:------------------+--------------+---------------------:
| *267 3 4 | 8 1 *57 | *2567 9 *67 |
| 179 79 8 | 6 357 2 | 1357 *1357 4 |
| 1267 67 5 | 9 37 4 | 12367 *137 8 |
'------------------'--------------'---------------------'
Mutant 4x6-ObiFish: (7)R57C8B3\c19b9[r22c6] => -7 r2c6
The endo-fin r2c8 causes the duplicated r2-cover. If it bothers, we can get rid of it with Obi's arithmetic as usual:
- Code: Select all
r57c8b3 \ r22c169b9 +r13
r1357c8b3 \ r1223c169b9 r123 -> b123
r1357c8b3 \ r2c169b1239 -b3
r1357c8 \ r2c169b129
And get this:
- Code: Select all
.-------------------.---------------.---------------------.
| 4 1 *67 | 3 *67 9 | 58 58 2 |
| 8 2 3679 | 5 4 6-7 | 137 *137 379 |
| *79 5 *379 | 1 2 8 | 4 6 *379 |
:-------------------+---------------+---------------------:
| 5 4 2 | 7 9 36 | 368 38 1 |
| *67 8 1 | 2 56 356 | 9 4 *367 |
| 3 679 79 | 4 8 1 | 67 2 5 |
:-------------------+---------------+---------------------:
| *267 3 4 | 8 1 *57 | *2567 9 *67 |
| 179 79 8 | 6 357 2 | 1357 *1357 4 |
| 1267 67 5 | 9 37 4 | 12367 *137 8 |
'-------------------'---------------'---------------------'
Mutant 5x7-fish: (7)R1357C8\c19b19[r2c6b2] => -7 r2c6
(7)r7c6 = [(7)r1c5 = r1c3 - r3c13 = r3c9 - r5c9 = r5c1 - r7c1 = r7c79 - r89c8 = (7)r2c8] => -7 r2c6
Or perhaps a bit cleaner if b1 -> c3:
Mutant 5x7-fish: (7)R1357C8\c139b9[r2c6b2] => -7 r2c6