November 18, 2018

Post puzzles for others to solve here.

November 18, 2018

Postby ArkieTech » Sun Nov 18, 2018 11:10 am

Code: Select all
 *-----------*
 |...|.54|2..|
 |..6|3..|.7.|
 |.12|...|..6|
 |---+---+---|
 |76.|...|..4|
 |9..|...|.23|
 |1..|...|.68|
 |---+---+---|
 |27.|...|54.|
 |.3.|..9|...|
 |..9|17.|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: November 18, 2018

Postby rjamil » Sun Nov 18, 2018 1:54 pm

Simple attempt:

Code: Select all
....542....63...7..12.....676......49......231......6827....54..3...9.....917....
 +------------+-------------------+----------+
 | 3  8  7    | 6     5      4    | 2   9  1 |
 | 4  9  6    | 3     12     12   | 8   7  5 |
 | 5  1  2    | 79    89     78   | 4   3  6 |
 +------------+-------------------+----------+
 | 7  6  38   | 29    12389  1238 | 19  5  4 |
 | 9  5  8-4  | (47)  1468   1678 | 17  2  3 |
 | 1  2  (34) | 5     39-4   (37) | 79  6  8 |
 +------------+-------------------+----------+
 | 2  7  1    | 8     36     36   | 5   4  9 |
 | 8  3  5    | 24    24     9    | 6   1  7 |
 | 6  4  9    | 1     7      5    | 3   8  2 |
 +------------+-------------------+----------+
0) XY-Wing: 347 @ r5c4 & r6c36 => -4 @ r5c3 & r6c5

(After 2 HS & 1 NS basic moves)
Code: Select all
 +---------+------------------+------------+
 | 3  8  7 | 6    5     4     | 2     9  1 |
 | 4  9  6 | 3    12    12    | 8     7  5 |
 | 5  1  2 | 79   89    78    | 4     3  6 |
 +---------+------------------+------------+
 | 7  6  3 | 29   1289  128   | 19    5  4 |
 | 9  5  8 | 4-7  146   (167) | (17)  2  3 |
 | 1  2  4 | 5    39    (37)  | 79    6  8 |
 +---------+------------------+------------+
 | 2  7  1 | 8    36    (36)  | 5     4  9 |
 | 8  3  5 | 24   24    9     | 6     1  7 |
 | 6  4  9 | 1    7     5     | 3     8  2 |
 +---------+------------------+------------+
1) WXYZ-Wing: 1367 @ r567c6 & r5c7 => -7 @ r5c4; stte

R. Jamil
rjamil
 
Posts: 774
Joined: 15 October 2014
Location: Karachi, Pakistan

Re: November 18, 2018

Postby SpAce » Sun Nov 18, 2018 4:04 pm

Code: Select all
.----------.-------------------------.------------.
| 3  8  7  |   6     5          4    |   2   9  1 |
| 4  9  6  |   3     12         12   |   8   7  5 |
| 5  1  2  |   79    89         78   |   4   3  6 |
:----------+-------------------------+------------:
| 7  6  38 |   29    12389      1238 |   19  5  4 |
| 9  5  48 | a(4)7  e1(6)8-4    1678 |   17  2  3 |
| 1  2  34 |   5    e3(9)-4   cb37   | dc79  6  8 |
:----------+-------------------------+------------:
| 2  7  1  |   8    d36        c36   |   5   4  9 |
| 8  3  5  |   24    24         9    |   6   1  7 |
| 6  4  9  |   1     7          5    |   3   8  2 |
'----------'-------------------------'------------'

(4=7)r5c4 - r6c6 = (367)r67c6,r6c7 - (6|9)r7c5,r6c7 = (69)r56c5 => -4 r56c5; stte
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: November 18, 2018

Postby Ngisa » Sun Nov 18, 2018 5:18 pm

Code: Select all
+----------------+-----------------------+----------------+
| 3     8     7  | 6      5         4    | 2      9     1 |
| 4     9     6  | 3     f12        12   | 8      7     5 |
| 5     1     2  |b79    a9-8      b78   | 4      3     6 |
+----------------+-----------------------+----------------+
| 7     6     38 |c29    (12389)    1238 |E19     5     4 |
| 9     5     48 |c47     1468      1678 |D17     2     3 |
| 1     2     34 | 5      349      C37   | 79     6     8 |
+----------------+-----------------------+----------------+
| 2     7     1  | 8      36        36   | 5      4     9 |
| 8     3     5  |d24    e24        9    | 6      1     7 |
| 6     4     9  | 1      7         5    | 3      8     2 |
+----------------+-----------------------+----------------+

Kraken Cell [12389)r4c5
(8)r3c5 - (8=79)r3c46 - (9=2)r4c4 - r8c4 = r8c5 - (2=1)r2c5 - (1)r4c5
(8)r3c5 - (8=79)r3c46 - (9=2)r4c4 - (2)r4c5
(8)r3c5 - (8=79)r3c46 - (7=3)r6c6 - (3)r4c5
(8)r3c4 - (8)r4c5
(8)r3c4 - (8=79)r3c5 - (9=247)r458c4 - (7=1)r5c7 - (1=9)r4c7 - (9)r4c5 => - 8r3c5; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: November 18, 2018

Postby SpAce » Sun Nov 18, 2018 5:34 pm

Ngisa wrote:Kraken Cell [12389)r4c5
(8)r3c5 - (8=79)r3c46 - (9=2)r4c4 - r8c4 = r8c5 - (2=1)r2c5 - (1)r4c5
(8)r3c5 - (8=79)r3c46 - (9=2)r4c4 - (2)r4c5
(8)r3c5 - (8=79)r3c46 - (7=3)r6c6 - (3)r4c5
(8)r3c4 - (8)r4c5
(8)r3c4 - (8=79)r3c5 - (9=247)r458c4 - (7=1)r5c7 - (1=9)r4c7 - (9)r4c5 => - 8r3c5; stte

Hi Clement! That's actually Nishio, but you can easily reverse your chains to turn it into a Kraken. (Also a typo in your last two chains: (8)r3c4.)
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: November 18, 2018

Postby Ngisa » Sun Nov 18, 2018 8:53 pm

SpAce wrote:
Ngisa wrote:Kraken Cell [12389)r4c5
(8)r3c5 - (8=79)r3c46 - (9=2)r4c4 - r8c4 = r8c5 - (2=1)r2c5 - (1)r4c5
(8)r3c5 - (8=79)r3c46 - (9=2)r4c4 - (2)r4c5
(8)r3c5 - (8=79)r3c46 - (7=3)r6c6 - (3)r4c5
(8)r3c4 - (8)r4c5
(8)r3c4 - (8=79)r3c5 - (9=247)r458c4 - (7=1)r5c7 - (1=9)r4c7 - (9)r4c5 => - 8r3c5; stte

Hi Clement! That's actually Nishio, but you can easily reverse your chains to turn it into a Kraken. (Also a typo in your last two chains: (8)r3c4.)
You are quite right. It can go like this:
(1)r4c5 - (1=24)r28c5 - (4)r8c4 = (4-7)r5c4 = r3c4 - (7=8)r3c6 - (8)r3c5
(2)r4c5 - (2=9)r4c4 - (9=7)r3c4 - (7=8)r3c6 - (8)r3c5
(3)r4c5 - (3=7)r6c6 - (7=8)r3c6 - (8)r3c5
(8)r4c5 - (8)r3c5
(9)r4c5 - (9=347)r6c356 - (7=8)r3c6 - (8)r3c5 => - 8r3c5; stte. I thought it meant the same thing(Kraken). Is Nishio the reverse of Kraken?
Last edited by Ngisa on Sun Nov 18, 2018 9:02 pm, edited 1 time in total.
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: November 18, 2018

Postby eleven » Sun Nov 18, 2018 9:00 pm

Code: Select all
 *--------------------------------------------------*
 |  3  8  7    |  6    5       4      |  2    9  1  |
 |  4  9  6    |  3    12      12     |  8    7  5  |
 |  5  1  2    |  79   89      78     |  4    3  6  |
 |-------------+----------------------+-------------|
 |  7  6  38   |  29   12389   1238   |  19   5  4  |
 |  9  5 b48   |  4-7  1468   a168+7  | a1+7  2  3  |
 |  1  2 b34   |  5    349   ca3+7    |  79   6  8  |
 |-------------+----------------------+-------------|
 |  2  7  1    |  8    36     a36     |  5    4  9  |
 |  8  3  5    |  24   24      9      |  6    1  7  |
 |  6  4  9    |  1    7       5      |  3    8  2  |
 *--------------------------------------------------*

(7=8)r5c7,r567c6 - (8=43)r56c3 - (3=7)r6c6 => -7r5c4, stte
eleven
 
Posts: 3153
Joined: 10 February 2008

Re: November 18, 2018

Postby Cenoman » Sun Nov 18, 2018 10:50 pm

The most inelegant solution of the day...
Code: Select all
 +-----------------+----------------------+-----------------+
 |  3    8    7    |  6    5       4      |  2    9    1    |
 |  4    9    6    |  3    12      12     |  8    7    5    |
 |  5    1    2    |  79   89      78     |  4    3    6    |
 +-----------------+----------------------+-----------------+
 |  7    6    38   |  29   38+129  21+38  |  19   5    4    |
 |  9    5    48   |  4-7  16+48   68+17  |  17   2    3    |
 |  1    2    34   |  5    49+3    37     |  79   6    8    |
 +-----------------+----------------------+-----------------+
 |  2    7    1    |  8    36      36     |  5    4    9    |
 |  8    3    5    |  24   24      9      |  6    1    7    |
 |  6    4    9    |  1    7       5      |  3    8    2    |
 +-----------------+----------------------+-----------------+

BUG+10
(1)r4c5 - (1=2)r2c5 - r8c5 = (2-4)r8c4 = (4)r5c4
(2)r4c5 - r8c5 = (2-4)r8c4 = (4)r5c4
(9)r4c5 - (91=7)r45c7
(3)r4c6 - (3=7)r6c6
(8-12)r24c6 = (1)r5c6 - (1=7)r5c7
(4|8-6)r5c5 = r5c6 - (63=7)r67c6
(1)r5c6 - (1=7)r5c7
(7)r5c6
(3)r6c5 - (3=7)r6c6
=> -7 r5c4; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: November 18, 2018

Postby SteveG48 » Mon Nov 19, 2018 2:27 am

Code: Select all
 *---------------------------------------------------------------------*
 | 3      8      7      |  6      5      4      | 2      9      1      |
 | 4      9      6      |  3     e12     12     | 8      7      5      |
 | 5      1      2      |bf79    b89    a8-7    | 4      3      6      |
 *----------------------+-----------------------+----------------------|
 | 7      6      38     |cf29    e12389  1238   |d19     5      4      |
 | 9      5      48     | c47     1468   1678   |d17     2      3      |
 | 1      2      34     |  5      349   d37     | 79     6      8      |
 *----------------------+-----------------------+----------------------|
 | 2      7      1      |  8      36     36     | 5      4      9      |
 | 8      3      5      |cf24    e24     9      | 6      1      7      |
 | 6      4      9      |  1      7      5      | 3      8      2      |
 *---------------------------------------------------------------------*


8r3c6 = (8*9)r3c45 - (9=247)r458c4 - (7=139)r45c7,r6c6 - (3*89= 124)r248c5 - (4=279)r348c4 => -7 r3c6 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: November 18, 2018

Postby SpAce » Mon Nov 19, 2018 7:42 am

Cenoman wrote:The most inelegant solution of the day... BUG+10

That's quite elegant compared to my BUG+23 the other day :D I was, however, hoping that'd you'd present a better alternative to this:

Code: Select all
.-----------.---------------------.---------------.
| 3  8   7  |  6     5       4    |   2      9  1 |
| 4  9   6  |  3    *12     *12   |   8      7  5 |
| 5  1   2  |  79    89      78   |   4      3  6 |
:-----------+---------------------+---------------:
| 7  6   38 | b9+2  *12389  *1238 | a(+1)-9  5  4 |
| 9  5  d48 | b47    1468   e1678 |  f17     2  3 |
| 1  2  c34 |  5     349    c37   |  f7(9)   6  8 |
:-----------+---------------------+---------------:
| 2  7   1  |  8     36     d36   |   5      4  9 |
| 8  3   5  | b24    24      9    |   6      1  7 |
| 6  4   9  |  1     7       5    |   3      8  2 |
'-----------'---------------------'---------------'

UR[12]r24c56 externals

(1)r4c7 =UR= (247*)r485c4 - (7=34)r6c63 - (3|4=68)r7c6,r5c3 - (6|8|*7=1)r5c6 - (17=9)r56c7 => -9 r4c7; stte
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: November 18, 2018

Postby SpAce » Mon Nov 19, 2018 8:17 am

Ngisa wrote:You are quite right. It can go like this:
(1)r4c5 - (1=24)r28c5 - (4)r8c4 = (4-7)r5c4 = r3c4 - (7=8)r3c6 - (8)r3c5
(2)r4c5 - (2=9)r4c4 - (9=7)r3c4 - (7=8)r3c6 - (8)r3c5
(3)r4c5 - (3=7)r6c6 - (7=8)r3c6 - (8)r3c5
(8)r4c5 - (8)r3c5
(9)r4c5 - (9=347)r6c356 - (7=8)r3c6 - (8)r3c5 => - 8r3c5; stte.

Yes, that's a Kraken Cell!

I thought it meant the same thing(Kraken). Is Nishio the reverse of Kraken?

Yes, they're each other's mirror images and produce the same results, but from a different point of view. Nishio starts with assuming some condition (usually a candidate=true) and then produce a contradiction (in this case an empty cell) somewhere, which proves the initial assumption false. On the other hand, a Kraken tests every member of a set in which at least one must be true (in this case all candidates of a cell) and proves that each of those branches leads to the same conclusion, which proves that conclusion true. In other words, Nishios produce contradictions and Krakens produce verities, but they can usually be turned into each other easily by reversing the chains.

It seems that Krakens are preferred for presentation purposes, but I would bet that many of them are actually found as Nishios and then reversed. In my case, I usually find only DP solutions or other special cases as Krakens directly, but most Kraken Cells/Rows/Cols/Boxes I find as Nishios first.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: November 18, 2018

Postby SpAce » Mon Nov 19, 2018 8:25 am

eleven wrote:(7=8)r5c7,r567c6 - (8=43)r56c3 - (3=7)r6c6 => -7r5c4, stte

Very nice!
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017


Return to Puzzles