November 15, 2015

Post puzzles for others to solve here.

November 15, 2015

Postby ArkieTech » Sun Nov 15, 2015 12:19 am

Code: Select all
 *-----------*
 |..6|34.|7..|
 |9..|8..|.24|
 |...|...|...|
 |---+---+---|
 |.4.|...|6..|
 |39.|.8.|.41|
 |..5|...|.9.|
 |---+---+---|
 |...|...|...|
 |86.|..3|..2|
 |..4|.51|3..|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: November 15, 2015

Postby Leren » Sun Nov 15, 2015 12:49 am

Code: Select all
*-----------------------------------------------------------------------*
| 125    1258   6       | 3      4      259     | 7      158   b589     |
| 9      1357   137     | 8      167    567     | 15     2      4       |
| 4      12578  1278    | 12579  1279   2579    |c1589   36     36      |
|-----------------------+-----------------------+-----------------------|
| 127    4      1278    | 12579  12379  2579    | 6      3578  a3578    |
| 3      9      27      | 2567   8      2567    |e2-5    4      1       |
| 6      1278   5       | 127    1237   4       |d28     9      378     |
|-----------------------+-----------------------+-----------------------|
| 15     135    139     | 24679  2679   8       | 149    167    679     |
| 8      6      19      | 479    79     3       | 1459   157    2       |
| 27     27     4       | 69     5      1       | 3      68     689     |
*-----------------------------------------------------------------------*

(5) r4c9 = (5-9) r1c9 = (9-8) r3c7 = (8-2) r6c7 = (2) r5c7 => - 5 r5c7; stte

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: November 15, 2015

Postby SteveG48 » Sun Nov 15, 2015 12:52 am

Code: Select all
 *---------------------------------------------------------------------*
 | 125    1258   6      | 3      4      259    |  7     c158    589    |
 | 9      1357   137    | 8      167    567    | b15     2      4      |
 | 4      12578  1278   | 12579  1279   2579   | b1589   36     36     |
 *----------------------+----------------------+-----------------------|
 | 127    4      1278   | 12579  12379  2579   |  6      3578   3578   |
 | 3      9      27     | 2567   8      2567   | a2-5    4      1      |
 | 6      1278   5      | 127    1237   4      |  28     9      378    |
 *----------------------+----------------------+-----------------------|
 | 15     135    139    | 24679  2679   8      | b149    167    679    |
 | 8      6      19     | 479    79     3      |be1459  d157    2      |
 | 27     27     4      | 69     5      1      |  3      68     689    |
 *---------------------------------------------------------------------*


(2=5)r5c7 - (5=1489)r2378c7 - (18=5)r1c8 - r8c8 = 5r8c7 => -5 r5c7 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: November 15, 2015

Postby pjb » Sun Nov 15, 2015 12:57 am

Code: Select all
 125     1258    6      | 3      4      259    | 7      158   b589   
 9       1357    137    | 8      167    567    | 15     2      4     
 4       12578   1278   | 12579  1279   2579   |c1589   36     36     
------------------------+----------------------+---------------------
 127     4       1278   | 1279-5 12379  279-5  | 6     f3578  a3578   
 3       9       27     | 2567   8      2567   |e2-5    4      1     
 6       1278    5      | 127    1237   4      |d28     9      378   
------------------------+----------------------+---------------------
 15      135     139    | 24679  2679   8      | 149    167    679   
 8       6       19     | 479    79     3      | 1459   157    2     
 27      27      4      | 69     5      1      | 3      68     689   

(5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 = r4c8 => -5 r4c46, r5c7; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: November 15, 2015

Postby Leren » Sun Nov 15, 2015 2:17 am

pjb wrote : (5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 = r4c8 => -5 r4c46, r5c7; stte

This looks like one for notation enthusiasts. It's the same chain as mine except for the last term where you have to "remember" the initial assumption as well as applying the previous term. Perhaps a more complete notation would be something like:

*(5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 *= r4c8 => -5 r4c46, r5c7; or

(5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 = r4c8 => -5 r4c46, r5c7;
\---------------------------------------------------------------/

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: November 15, 2015

Postby SteveG48 » Sun Nov 15, 2015 3:08 am

Leren wrote:
pjb wrote : (5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 = r4c8 => -5 r4c46, r5c7; stte

This looks like one for notation enthusiasts. It's the same chain as mine except for the last term where you have to "remember" the initial assumption as well as applying the previous term. Perhaps a more complete notation would be something like:

*(5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 *= r4c8 => -5 r4c46, r5c7; or

(5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 = r4c8 => -5 r4c46, r5c7;
\---------------------------------------------------------------/

Leren


How about if we simply write Phil's as:

(5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 = r4c89 => -5 r4c46, r5c7; stte

Then no memory is required.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: November 15, 2015

Postby Leren » Sun Nov 15, 2015 3:15 am

Steve48 Wrote : How about if we simply write Phil's as: (5)r4c9 = (5-9)r1c9 = (9-8)r3c7 = (8-2)r6c7 = (2-5)r5c7 = r4c89 => -5 r4c46, r5c7; stte Then no memory is required.

Nice one - works for me.

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: November 15, 2015

Postby pjb » Sun Nov 15, 2015 10:50 am

Thanks guys. Point taken. When I posted there were no replies yet. If I had seen your solution, Leren, I would have gone looking for something else.
Cheers, Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia


Return to Puzzles