.
SER = 8.3
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 359 349 8 ! 359 2 6 ! 45 7 1 !
! 2 149 1459 ! 5789 4578 4578 ! 458 3 6 !
! 356 7 456 ! 1 3458 3458 ! 2458 2458 9 !
+----------------------+----------------------+----------------------+
! 58 28 3 ! 2578 6 578 ! 1 9 4 !
! 7 124689 124569 ! 2358 13458 13458 ! 2358 2568 235 !
! 1568 12468 12456 ! 2358 13458 9 ! 7 2568 235 !
+----------------------+----------------------+----------------------+
! 1389 12389 129 ! 4 1357 1357 ! 6 125 2357 !
! 136 136 7 ! 35 9 2 ! 345 145 8 !
! 4 5 12 ! 6 1378 1378 ! 9 12 237 !
+----------------------+----------------------+----------------------+
189 candidates.
The simplest-first strategy gives a solution in W5, in 26 non-W1 steps: Show naked-pairs-in-a-row: r9{c3 c8}{n1 n2} ==> r9c9≠2, r9c6≠1, r9c5≠1
whip[1]: b8n1{r7c6 .} ==> r7c1≠1, r7c2≠1, r7c3≠1, r7c8≠1
biv-chain[4]: r2n1{c2 c3} - r9c3{n1 n2} - r7c3{n2 n9} - b4n9{r5c3 r5c2} ==> r5c2≠1, r2c2≠9
biv-chain[4]: r4n2{c2 c4} - c4n7{r4 r2} - r2n9{c4 c3} - b4n9{r5c3 r5c2} ==> r5c2≠2
biv-chain[4]: r4n2{c2 c4} - c4n7{r4 r2} - r2n9{c4 c3} - r7c3{n9 n2} ==> r5c3≠2, r6c3≠2, r7c2≠2
z-chain[4]: r8c4{n3 n5} - r8c7{n5 n4} - r1n4{c7 c2} - c2n3{r1 .} ==> r8c1≠3
t-whip[4]: r2n9{c4 c3} - r7c3{n9 n2} - r7c8{n2 n5} - r8n5{c8 .} ==> r2c4≠5
biv-chain[5]: r4c2{n2 n8} - b7n8{r7c2 r7c1} - c1n9{r7 r1} - b2n9{r1c4 r2c4} - c4n7{r2 r4} ==> r4c4≠2
hidden-single-in-a-row ==> r4c2=2
t-whip[5]: c4n7{r4 r2} - r2n9{c4 c3} - r7c3{n9 n2} - r7c8{n2 n5} - r8n5{c8 .} ==> r4c4≠5
whip[5]: r5n9{c2 c3} - r2n9{c3 c4} - c4n7{r2 r4} - c4n8{r4 r6} - b6n8{r6c8 .} ==> r5c2≠8
whip[5]: c1n9{r7 r1} - r2n9{c3 c4} - c4n7{r2 r4} - r4n8{c4 c6} - c4n8{r5 .} ==> r7c1≠8
hidden-single-in-a-block ==> r7c2=8
finned-swordfish-in-columns: n3{c2 c7 c4}{r1 r8 r5} ==> r5c6≠3, r5c5≠3
biv-chain[4]: r8n4{c8 c7} - r1n4{c7 c2} - c2n3{r1 r8} - r8c4{n3 n5} ==> r8c8≠5
finned-swordfish-in-rows: n5{r1 r8 r4}{c1 c7 c4} ==> r6c4≠5, r5c4≠5
biv-chain[4]: c7n2{r3 r5} - c7n3{r5 r8} - c2n3{r8 r1} - r1n4{c2 c7} ==> r3c7≠4
z-chain[4]: r1c7{n4 n5} - r8c7{n5 n3} - c2n3{r8 r1} - r1n4{c2 .} ==> r2c7≠4
t-whip[4]: c2n3{r1 r8} - r8c4{n3 n5} - r8c7{n5 n4} - r1n4{c7 .} ==> r1c2≠9
hidden-single-in-a-column ==> r5c2=9
biv-chain[3]: r1n9{c4 c1} - r7c1{n9 n3} - c2n3{r8 r1} ==> r1c4≠3
whip[1]: b2n3{r3c6 .} ==> r3c1≠3
hidden-pairs-in-a-column: c1{n3 n9}{r1 r7} ==> r1c1≠5
x-wing-in-rows: n5{r1 r8}{c4 c7} ==> r5c7≠5, r3c7≠5, r2c7≠5
single ==> r2c7=8, r3c7=2, r5c7=3
whip[1]: c4n8{r6 .} ==> r4c6≠8, r5c5≠8, r5c6≠8, r6c5≠8
naked-pairs-in-a-block: b6{r5c9 r6c9}{n2 n5} ==> r6c8≠5, r6c8≠2, r5c8≠5, r5c8≠2
whip[1]: c8n2{r9 .} ==> r7c9≠2
whip[1]: b6n5{r6c9 .} ==> r7c9≠5
hidden-pairs-in-a-block: b2{n3 n8}{r3c5 r3c6} ==> r3c6≠5, r3c6≠4, r3c5≠5, r3c5≠4
whip[1]: b2n4{r2c6 .} ==> r2c2≠4, r2c3≠4
naked-single ==> r2c2=1
biv-chain[3]: r6c2{n6 n4} - b1n4{r1c2 r3c3} - b1n6{r3c3 r3c1} ==> r6c1≠6
t-whip[3]: b1n4{r3c3 r1c2} - r6c2{n4 n6} - c3n6{r5 .} ==> r3c3≠5
biv-chain[2]: r4n5{c6 c1} - b1n5{r3c1 r2c3} ==> r2c6≠5
biv-chain[3]: b2n5{r2c5 r1c4} - r8c4{n5 n3} - r6n3{c4 c5} ==> r6c5≠5
biv-chain[4]: c4n7{r4 r2} - r2n9{c4 c3} - b1n5{r2c3 r3c1} - r4n5{c1 c6} ==> r4c6≠7
stte
That's a lot of steps. So, I tried the fewer steps method in W8.
On the 1st try, I found a solution in 5 non-W1 steps (with no undeclared Pairs):
whip[6]: c1n9{r7 r1} - r2n9{c3 c4} - c4n7{r2 r4} - r4n2{c4 c2} - r4n8{c2 c6} - c4n8{r4 .} ==> r7c1≠8hidden-single-in-a-block ==> r7c2=8
naked-single ==> r4c2=2
whip[5]: c2n3{r8 r1} - c1n3{r3 r7} - c1n9{r7 r1} - r1c4{n9 n5} - r8c4{n5 .} ==> r8c7≠3hidden-single-in-a-column ==> r5c7=3
hidden-single-in-a-column ==> r3c7=2
hidden-single-in-a-column ==> r2c7=8
whip[1]: c4n8{r6 .} ==> r4c6≠8, r5c5≠8, r5c6≠8, r6c5≠8
whip[7]: r4n8{c1 c4} - c4n7{r4 r2} - c4n9{r2 r1} - c1n9{r1 r7} - c1n1{r7 r8} - r9c3{n1 n2} - r7c3{n2 .} ==> r6c1≠8hidden-single-in-a-block ==> r4c1=8
whip[1]: r4n5{c6 .} ==> r5c4≠5, r5c5≠5, r5c6≠5, r6c4≠5, r6c5≠5
naked-pairs-in-a-block: b5{r5c5 r5c6}{n1 n4} ==> r6c5≠4, r6c5≠1naked-single ==> r6c5=3
whip[1]: r6n1{c3 .} ==> r5c2≠1, r5c3≠1
whip[1]: r6n4{c3 .} ==> r5c2≠4, r5c3≠4====> STEP #5
whip[8]: r1n3{c2 c4} - r8c4{n3 n5} - c7n5{r8 r1} - r1c1{n5 n9} - r7c1{n9 n1} - r9c3{n1 n2} - r9c8{n2 n1} - b8n1{r9c5 .} ==> r3c1≠3stte