From the Chicago Tribune online for 4-18-08:
- Code: Select all
1 . 4 | . . . | . . 8
. . 7 | 8 6 . | 2 1 .
. 5 . | . . . | . . .
------+-------+------
. . . | . 1 8 | . 6 .
. . . | 6 . 2 | . . 7
. 6 . | 3 4 . | . . .
------+-------+------
. . . | . . . | . 4 .
. 4 2 | . 8 6 | 9 . .
3 . . | . . . | 8 . 5
STSS brings us to:
- Code: Select all
1 2 4 | 79 379 379 | 6 5 8
9 3 7 | 8 6 5 | 2 1 4
6 5 8 | 14 2 14 | 37 37 9
---------------+----------------+-----------
2457 79 359 | 579 1 8 | 345 6 23
48 189 1359 | 6 59 2 | 1345 89 7
2578 6 159 | 3 4 79 | 15 89 12
---------------+----------------+-----------
578 1789 159 | 2 3579 1379 | 17 4 6
57 4 2 | 157 8 6 | 9 37 13
3 179 6 | 1479 79 1479 | 8 2 5
One way to crack the puzzle is to attack r8c9 to see if it can be forced to a 1 or a 3 (nice color chain involving 3's is what attracted me to this spot). My solver found:
r5c8=9=r6c8=8=r6c1=2=r6c9=1=r8c9 and
r5c8-9-r5c5-5-r8c4=1=r8c9
ergo r8c9<>3, r7c7<>1, r6c9<>1
SSTS to solve.
I played with this a bit and tried to find a Nice Loop that would show r8c9<>3 (or, of course, r8c9=1) but don't see it.
Pointers appreciated!
Cheers & thanks...
- drac
[edit]: fixed PM grid (was missing row 1)