daj95376 wrote:
- Code: Select all
+--------------------------------------------------------------------------------+
| 6 147 1237 | 13 479 5 | 379 8 279 |
| 23457 147 123578 | 13 4789 789 | 35679 579 2679 |
| 357 9 3578 | 2 6 78 | 357 4 1 |
|--------------------------+--------------------------+--------------------------|
| 8 16 1269 | 7 5 29 | 19 3 4 |
| 79 5 4 | 8 1 3 | 2 6 79 |
| 279 3 127 | 4 29 6 | 8 179 5 |
|--------------------------+--------------------------+--------------------------|
| 1 8 5679 | 56 3 4 | 5679 2 679 |
| 34579 467 35679 | 56 27 127 | 145679 1579 8 |
| 457 2 567 | 9 78 178 | 14567 157 3 |
+--------------------------------------------------------------------------------+
# 105 eliminations remain
Please forgive me for interrupting, but does the following work? (I don't know how to write it as a chain.)
- Code: Select all
[r4c2]=1 [r4c7]<>1 r89c7=14 [r9c7]<>6 [r9c3]=6 [r4c3]<>6 [r4c2]=6 => [r4c2]<>1
This should work (if I haven't made any typos ):
NL: r4c2 -1- r4c7 =1= hp(14)r89c7 -6- r9c7 =6= r9c3 -6- r4c3 =6= r4c2
AIC: (1)r4c7 = hp(14)r89c7 - (6)r9c7 = (6)r9c3 - (6)r4c3 = (6)r4c2
=> r4c2<>1
Incidentally, this is a reason why I prefer the AIC notation. Except for the fact that traditionally you start and end and AIC with a strong link and so the chain doesn't start with (1)r4c2 - (1)r4c7 etc., the AIC (IMO at least) more closely mirrors daj95376's printed logic.