I have no idea about all these uniqueness techniques you guys are talking about.
I just try to solve it without assuming uniqueness, albeit less elegantly (
).
First, from this position:
- Code: Select all
*-----------------------------------------------------------------------------*
| 4579 79 34579 | 27 8 1 | 234569 2347 #4679 |
| 2 1 @379 | 4 6 5 |*39 8 #79 |
| 457 6 8 | 3 27 9 | 245 1247 #147 |
|-------------------------+-------------------------+-------------------------|
| 3 79 @79 | 5 4 2 | 1 6 8 |
| 1 4 2 | 8 3 6 | 7 9 5 |
| 8 5 6 | 1 9 7 | 24 24 3 |
|-------------------------+-------------------------+-------------------------|
| 467 28 147 | 9 27 3 | 468 5 #1467 |
| 4579 3 4579 | 6 1 8 | 49 47 2 |
| 679 28 @179 | 27 5 4 | 3689 137 -1679 |
*-----------------------------------------------------------------------------*
ALS-xy-wing (don't worry, I'll explain the logic in detail below):
ALS A: r249c3={1379}
ALS B: r1237c9={14679}
ALS C: r2c7={39}
restricted common between A & C: 3
restricted common between B & C: 9
common between A & B: r9c9=1
Therefore r9c9 can't be 1.
Logic:
r2c7 must be 3 or 9.
If r2c7=3, then r249c3 becomes a naked triple of {179} with 1 fixed at r9c3 => r9c9 can't be 1.
If r2c7=9, then r1237c9 becomes a naked quad of {1467} => r9c9 can't be 1.
Therefore r9c9 can't be 1 no matter what.
- Code: Select all
*-----------------------------------------------------------------------------*
|*4579 *79 *34579 |*27 8 1 |*234569 -2347 *4679 |
| 2 1 379 | 4 6 5 |@39 8 79 |
| 457 6 8 | 3 27 9 | 245 1247 147 |
|-------------------------+-------------------------+-------------------------|
| 3 79 79 | 5 4 2 | 1 6 8 |
| 1 4 2 | 8 3 6 | 7 9 5 |
| 8 5 6 | 1 9 7 |@24 24 3 |
|-------------------------+-------------------------+-------------------------|
| 467 28 147 | 9 27 3 | 468 5 1467 |
| 4579 3 4579 | 6 1 8 |@49 47 2 |
|#679 28 #179 |#27 5 4 | 3689 #137 #679 |
*-----------------------------------------------------------------------------*
ALS-xyz-wing (or something like that)
ALS A: r268c7={2349}
ALS B: r9c13489={123679}
ALS C: r1c123479={2345679}
semi-restricted common between A & C: 2
semi-restricted common between B & C: 2
common among A, B & C: r1c8=3
Therefore r1c8 can't be 3.
Logic:
On r1, 1 of the 3 cells r1c478 must be 2.
If r1c4=2, then r9c13489 becomes a naked quint of {13679} with 3 fixed at r9c8 => r1c8 can't be 3.
If r1c7=2, then r268c7 becomes a naked triple of {349} with 3 fixed at r2c7 => r1c8 can't be 3.
If r1c8=2, then r1c8 can't be 3.
Therefore r1c8 can't be 3 no matter what.
The puzzle can then be solved with a turbot fish on 7, a box-line elimination on 4 and singles.