Here's just one approach.... showing all candidates per cell....
With standard elimination you'd start with
- Code: Select all
{27 }{1256 }{16 }{1256 }{2567 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246 }{2467 }{8 }{5 }{167 }{67 }
{78 }{1568 }{4 }{156 }{5679 }{1569 }{37 }{1367 }{2 }
{5 }{12468 }{136 }{9 }{23468 }{246 }{3478 }{2378 }{347 }
{289 }{248 }{7 }{2458 }{1 }{245 }{6 }{23589 }{345 }
{289 }{2468 }{36 }{24568 }{234568}{7 }{348 }{23589 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{3578 }{3457 }
{4 }{3 }{8 }{7 }{56 }{156 }{2 }{56 }{9 }
{1 }{7 }{5 }{3 }{24689 }{2469 }{48 }{68 }{46 }
Hidden Single: Digit 1 only found in one col (6 ) of row 8
With standard elimination:
- Code: Select all
{27 }{1256 }{16 }{1256 }{2567 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246 }{2467 }{8 }{5 }{167 }{67 }
{78 }{1568 }{4 }{156 }{5679 }{569 }{37 }{1367 }{2 }
{5 }{12468 }{136 }{9 }{23468 }{246 }{3478 }{2378 }{347 }
{289 }{248 }{7 }{2458 }{1 }{245 }{6 }{23589 }{345 }
{289 }{2468 }{36 }{24568 }{234568}{7 }{348 }{23589 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{3578 }{3457 }
{4 }{3 }{8 }{7 }{56 }{1 }{2 }{56 }{9 }
{1 }{7 }{5 }{3 }{24689 }{2469 }{48 }{68 }{46 }
This is where you are.
Now....
Locked Candidates 2: In row 5 digit 3 appears only in the cells for box 6,
so the digit is removed from R4C7, R4C8, R4C9, R6C7, and R6C8 (within the same box).
And with standard elimination:
- Code: Select all
{27 }{1256 }{16 }{1256 }{2567 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246 }{2467 }{8 }{5 }{167 }{67 }
{78 }{1568 }{4 }{156 }{5679 }{569 }{37 }{1367 }{2 }
{5 }{12468 }{136 }{9 }{23468 }{246 }{478 }{278 }{47 }
{289 }{248 }{7 }{2458 }{1 }{245 }{6 }{23589 }{345 }
{289 }{2468 }{36 }{24568 }{234568}{7 }{48 }{2589 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{3578 }{3457 }
{4 }{3 }{8 }{7 }{56 }{1 }{2 }{56 }{9 }
{1 }{7 }{5 }{3 }{24689 }{2469 }{48 }{68 }{46 }
Hidden Single: Digit 3 only found in one row (3 ) of col 7
With standard elimination:
- Code: Select all
{27 }{1256 }{16 }{1256 }{2567 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246 }{2467 }{8 }{5 }{167 }{67 }
{78 }{1568 }{4 }{156 }{5679 }{569 }{3 }{167 }{2 }
{5 }{12468 }{136 }{9 }{23468 }{246 }{478 }{278 }{47 }
{289 }{248 }{7 }{2458 }{1 }{245 }{6 }{23589 }{345 }
{289 }{2468 }{36 }{24568 }{234568}{7 }{48 }{2589 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{3578 }{3457 }
{4 }{3 }{8 }{7 }{56 }{1 }{2 }{56 }{9 }
{1 }{7 }{5 }{3 }{24689 }{2469 }{48 }{68 }{46 }
Hidden Single: Digit 7 only found in one row (4 ) of col 7
With standard elimination, a lot clears out:
- Code: Select all
{7 }{1256}{16 }{1256}{25 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246}{24 }{8 }{5 }{16 }{7 }
{8 }{156 }{4 }{156 }{579 }{59 }{3 }{16 }{2 }
{5 }{18 }{13 }{9 }{38 }{6 }{7 }{2 }{4 }
{9 }{48 }{7 }{248 }{1 }{24 }{6 }{3 }{5 }
{2 }{46 }{36 }{45 }{345 }{7 }{8 }{9 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{7 }{3 }
{4 }{3 }{8 }{7 }{6 }{1 }{2 }{5 }{9 }
{1 }{7 }{5 }{3 }{29 }{29 }{4 }{8 }{6 }
Hidden Single: Digit 7 only found in one col (5) of row 3.
- Code: Select all
{7 }{1256}{16 }{1256}{25 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246}{24 }{8 }{5 }{16 }{7 }
{8 }{156 }{4 }{156 }{7 }{59 }{3 }{16 }{2 }
{5 }{18 }{13 }{9 }{38 }{6 }{7 }{2 }{4 }
{9 }{48 }{7 }{248 }{1 }{24 }{6 }{3 }{5 }
{2 }{46 }{36 }{45 }{345 }{7 }{8 }{9 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{7 }{3 }
{4 }{3 }{8 }{7 }{6 }{1 }{2 }{5 }{9 }
{1 }{7 }{5 }{3 }{29 }{29 }{4 }{8 }{6 }
Hidden Single: Digit 9 only found in one row (9) of col 5. And then
it clears out from there with standard elimination.
Another approach,starting from where you are...
- Code: Select all
{27 }{1256 }{16 }{1256 }{2567 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246 }{2467 }{8 }{5 }{167 }{67 }
{78 }{1568 }{4 }{156 }{5679 }{569 }{37 }{1367 }{2 }
{5 }{12468 }{136 }{9 }{23468 }{246 }{3478 }{2378 }{347 }
{289 }{248 }{7 }{2458 }{1 }{245 }{6 }{23589 }{345 }
{289 }{2468 }{36 }{24568 }{234568}{7 }{348 }{23589 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{3578 }{3457 }
{4 }{3 }{8 }{7 }{56 }{1 }{2 }{56 }{9 }
{1 }{7 }{5 }{3 }{24689 }{2469 }{48 }{68 }{46 }
Hidden Pairs: 37 found in cols 8 and 9 of row 7 ; removing extra digit 4 from 9
Hidden Pairs: 37 found in cols 8 and 9 of row 7 ; removing extra digit 5 from 8
Hidden Pairs: 37 found in cols 8 and 9 of row 7 ; removing extra digit 5 from 9
Hidden Pairs: 37 found in cols 8 and 9 of row 7 ; removing extra digit 8 from 8
Hidden Pairs: 29 found in cols 5 and 6 of row 9 ; removing extra digit 4 from 5
Hidden Pairs: 29 found in cols 5 and 6 of row 9 ; removing extra digit 4 from 6
Hidden Pairs: 29 found in cols 5 and 6 of row 9 ; removing extra digit 6 from 5
Hidden Pairs: 29 found in cols 5 and 6 of row 9 ; removing extra digit 6 from 6
Hidden Pairs: 29 found in cols 5 and 6 of row 9 ; removing extra digit 8 from 5
Then various hidden singles.
Yet another approach would be to lean more heavily on naked triples:
Again starting as
- Code: Select all
{27 }{1256 }{16 }{1256 }{2567 }{3 }{9 }{4 }{8 }
{3 }{126 }{9 }{1246 }{2467 }{8 }{5 }{167 }{67 }
{78 }{1568 }{4 }{156 }{5679 }{1569 }{37 }{1367 }{2 }
{5 }{12468 }{136 }{9 }{23468 }{246 }{3478 }{2378 }{347 }
{289 }{248 }{7 }{2458 }{1 }{245 }{6 }{23589 }{345 }
{289 }{2468 }{36 }{24568 }{234568}{7 }{348 }{23589 }{1 }
{6 }{9 }{2 }{458 }{458 }{45 }{1 }{3578 }{3457 }
{4 }{3 }{8 }{7 }{56 }{156 }{2 }{56 }{9 }
{1 }{7 }{5 }{3 }{24689 }{2469 }{48 }{68 }{46 }
Naked Triple: 458 in R7C4/R7C5/R7C6, R7C8 digit 5 not possible.
Naked Triple: 458 in R7C4/R7C5/R7C6, R7C8 digit 8 not possible.
Naked Triple: 458 in R7C4/R7C5/R7C6, R7C9 digit 4 not possible.
Naked Triple: 458 in R7C4/R7C5/R7C6, R7C9 digit 5 not possible.
Interestingly this reduces out the same candidates as does the hidden pairs 37
seen above. Then these....
Naked Triple: 486 in R9C7/R9C8/R9C9, R9C5 digit 4 not possible.
Naked Triple: 486 in R9C7/R9C8/R9C9, R9C5 digit 6 not possible.
Naked Triple: 486 in R9C7/R9C8/R9C9, R9C5 digit 8 not possible.
Naked Triple: 486 in R9C7/R9C8/R9C9, R9C6 digit 4 not possible.
Naked Triple: 486 in R9C7/R9C8/R9C9, R9C6 digit 6 not possible.
That reduces out the same candidates as the hidden pairs 29 seen above.