.
SER = 7.2
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 1 6 5 ! 279 48 24789 ! 3 28 478 !
! 3 8 247 ! 127 5 1247 ! 6 9 147 !
! 9 27 247 ! 3 6 12478 ! 24 5 1478 !
+-------------------+-------------------+-------------------+
! 28 9 28 ! 4 1 3 ! 5 7 6 !
! 5 3 1 ! 69 7 69 ! 8 4 2 !
! 67 4 67 ! 8 2 5 ! 9 1 3 !
+-------------------+-------------------+-------------------+
! 24678 27 2678 ! 267 9 24678 ! 1 3 5 !
! 278 1 9 ! 5 3 278 ! 24 6 48 !
! 2468 5 3 ! 126 48 12468 ! 7 28 9 !
+-------------------+-------------------+-------------------+
101 candidates.
Simplest-first solution, in BC4: Show hidden-pairs-in-a-row: r3{n1 n8}{c6 c9} ==> r3c9≠7, r3c9≠4, r3c6≠7, r3c6≠4, r3c6≠2
whip[1]: r3n7{c3 .} ==> r2c3≠7
x-wing-in-columns: n8{c5 c8}{r1 r9} ==> r9c6≠8, r9c1≠8, r1c9≠8, r1c6≠8
finned-x-wing-in-columns: n2{c7 c2}{r3 r8} ==> r8c1≠2
biv-chain[2]: c8n2{r1 r9} - r8n2{c7 c6} ==> r1c6≠2
biv-chain[3]: r1c5{n4 n8} - b3n8{r1c8 r3c9} - r8c9{n8 n4} ==> r1c9≠4
naked-single ==> r1c9=7
whip[1]: r1n4{c6 .} ==> r2c6≠4
biv-chain[3]: r4c1{n2 n8} - r8c1{n8 n7} - r7c2{n7 n2} ==> r7c1≠2, r9c1≠2
singles ==> r4c1=2, r4c3=8
whip[1]: b7n2{r7c3 .} ==> r7c4≠2, r7c6≠2
hidden-pairs-in-a-row: r7{n4 n8}{c1 c6} ==> r7c6≠7, r7c6≠6, r7c1≠7, r7c1≠6
naked-pairs-in-a-block: b8{r7c6 r9c5}{n4 n8} ==> r9c6≠4, r8c6≠8
biv-chain[3]: r8c6{n2 n7} - c4n7{r7 r2} - c4n1{r2 r9} ==> r9c4≠2
whip[1]: b8n2{r9c6 .} ==> r2c6≠2
biv-chain[3]: b7n2{r7c2 r7c3} - r2n2{c3 c4} - c4n7{r2 r7} ==> r7c2≠7
singles ==> r7c2=2, r3c2=7
biv-chain[4]: c8n2{r9 r1} - r1c4{n2 n9} - b5n9{r5c4 r5c6} - c6n6{r5 r9} ==> r9c6≠2
stte
It is interesting to see how such an easy puzzle (it is in BC4) can become absurdly complicated if one adds artificial requirements on the number of steps.
There's no 1-step solution, even using whips as long as 8.
There are several 2-step solutions, with whip[8], e.g.
whip[5]: r4c3{n8 n2} - b1n2{r3c3 r3c2} - r7c2{n2 n7} - r8c1{n7 n2} - c7n2{r8 .} ==> r4c1≠8singles ==> r4c1=2, r4c3=8
whip[1]: b7n2{r7c3 .} ==> r7c4≠2, r7c6≠2
whip[8]: r7n8{c1 c6} - b2n8{r1c6 r1c5} - c8n8{r1 r9} - r9c1{n8 n6} - c6n6{r9 r5} - c6n9{r5 r1} - r1n4{c6 c9} - r8c9{n4 .} ==> r7c1≠4stte
But this is using absurdly long and complicated chains for a puzzle in BC4.
Then, I tried to use only reversible chains (z-chains) of length no more than 6 (not much more than the BC rating) and to apply the fewer steps algorithm. The first try gave a solution in 6 non-W1 steps (not forgetting to count the initial Pair):
1) hidden-pairs-in-a-row: r3{n1 n8}{c6 c9} ==> r3c6≠4, r3c9≠7, r3c9≠4, r3c6≠7, r3c6≠2whip[1]: r3n7{c3 .} ==> r2c3≠7
2) x-wing-in-columns: n8{c5 c8}{r1 r9} ==> r1c9≠8, r9c6≠8, r9c1≠8, r1c6≠83) biv-chain[4]: r1c5{n4 n8} - r1c8{n8 n2} - r3c7{n2 n4} - b1n4{r3c3 r2c3} ==> r2c6≠4whip[1]: b2n4{r1c6 .} ==> r1c9≠4
naked-single ==> r1c9=7
4) z-chain[6]: c2n2{r7 r3} - b3n2{r3c7 r1c8} - r1c4{n2 n9} - r5c4{n9 n6} - r7c4{n6 n7} - r7c2{n7 .} ==> r7c3≠2, r7c6≠2, r7c1≠25) z-chain[6]: r3n7{c2 c3} - r6c3{n7 n6} - r7c3{n6 n8} - r8c1{n8 n2} - c7n2{r8 r3} - r3c2{n2 .} ==> r7c2≠7singles ==> r7c2=2, r3c2=7, r4c1=2, r4c3=8
6) z-chain[6]: r7n4{c6 c1} - r9c1{n4 n6} - c6n6{r9 r5} - c6n9{r5 r1} - c6n4{r1 r9} - r9c5{n4 .} ==> r7c6≠8stte