I rather suspect 550 is not going to be beaten ... I have found a grid that is ED to JPF's original, but it has the same solution count.
Here is a "normalised" version of JPF's original grid. Box 1 is fixed, and box 5 is in reduced form:
- Code: Select all
+-------+-------+-------+
| 1 2 3 | . . . | . . . |
| 4 5 6 | 2 . . | . . . |
| 7 8 9 | . . . | 3 . . |
+-------+-------+-------+
| . . . | 1 2 9 | . . . |
| . 1 . | 4 5 8 | . . . |
| . . . | 6 7 3 | . 4 . |
+-------+-------+-------+
| . . 7 | . . . | . . . |
| . . . | . . 4 | . . . |
| . . . | . . . | . . 1 |
+-------+-------+-------+
There are (at least) 36 different forms that give the same result, ie 550:
- Code: Select all
123......4562.....789...3.....129....1.458......673.4...7...........4...........1
123......4562.....789...3.....129....1.458......673.4...7..............1.....4...
123......4562.....789...3.....129....1.458......673.4......4.....7..............1
123......4562.....789...3.....129....1.458......673.4.........1..7...........4...
123......4562.....789...3.....129....1.458......673.4......4...........1..7......
123......4562.....789...3.....129....1.458......673.4.........1.....4.....7......
123......4562.....789...3.....129....1.458......673..4..7...........4..........1.
123......4562.....789...3.....129....1.458......673..4..7.............1......4...
123......4562.....789...3.....129....1.458......673..4.....4.....7.............1.
123......4562.....789...3.....129....1.458......673..4.......1...7...........4...
123......4562.....789...3.....129....1.458......673..4.....4..........1...7......
123......4562.....789...3.....129....1.458......673..4.......1......4.....7......
123......4562.....789....3....129....1.458......6734....7...........4...........1
123......4562.....789....3....129....1.458......6734....7..............1.....4...
123......4562.....789....3....129....1.458......6734.......4.....7..............1
123......4562.....789....3....129....1.458......6734..........1..7...........4...
123......4562.....789....3....129....1.458......6734.......4...........1..7......
123......4562.....789....3....129....1.458......6734..........1.....4.....7......
123......4562.....789....3....129....1.458......673..4..7...........4.........1..
123......4562.....789....3....129....1.458......673..4..7............1.......4...
123......4562.....789....3....129....1.458......673..4.....4.....7............1..
123......4562.....789....3....129....1.458......673..4......1....7...........4...
123......4562.....789....3....129....1.458......673..4.....4.........1....7......
123......4562.....789....3....129....1.458......673..4......1.......4.....7......
123......4562.....789.....3...129....1.458......6734....7...........4..........1.
123......4562.....789.....3...129....1.458......6734....7.............1......4...
123......4562.....789.....3...129....1.458......6734.......4.....7.............1.
123......4562.....789.....3...129....1.458......6734.........1...7...........4...
123......4562.....789.....3...129....1.458......6734.......4..........1...7......
123......4562.....789.....3...129....1.458......6734.........1......4.....7......
123......4562.....789.....3...129....1.458......673.4...7...........4.........1..
123......4562.....789.....3...129....1.458......673.4...7............1.......4...
123......4562.....789.....3...129....1.458......673.4......4.....7............1..
123......4562.....789.....3...129....1.458......673.4.......1....7...........4...
123......4562.....789.....3...129....1.458......673.4......4.........1....7......
123......4562.....789.....3...129....1.458......673.4.......1.......4.....7......
Box 5 can really only have 10,080 ED settings, and so I've been testing only those.
The only other B5 setting for which I've had any joy is this one, and it seems to be closely related:
- Code: Select all
+-------+-------+-------+
| 1 2 3 | . . . | . . . |
| 4 5 6 | 3 . . | . . . |
| 7 8 9 | . . . | 2 . . |
+-------+-------+-------+
| . . . | 1 3 8 | . . . |
| . . 1 | 4 6 9 | . . . |
| . . . | 5 7 2 | . 4 . |
+-------+-------+-------+
| . 7 . | . . . | . . . |
| . . . | . . 4 | . . . |
| . . . | . . . | . . 1 |
+-------+-------+-------+
Once again, all solution counts are 550, and there are 36 different puzzles. Note that the clue values in B6-B9 are the same as above (1,4,4,7).
- Code: Select all
123......4563.....789...2.....138.....1469......572.4..7............4...........1
123......4563.....789...2.....138.....1469......572.4..7...............1.....4...
123......4563.....789...2.....138.....1469......572.4......4....7...............1
123......4563.....789...2.....138.....1469......572.4.........1.7............4...
123......4563.....789...2.....138.....1469......572.4......4...........1.7.......
123......4563.....789...2.....138.....1469......572.4.........1.....4....7.......
123......4563.....789...2.....138.....1469......572..4.7............4..........1.
123......4563.....789...2.....138.....1469......572..4.7..............1......4...
123......4563.....789...2.....138.....1469......572..4.....4....7..............1.
123......4563.....789...2.....138.....1469......572..4.......1..7............4...
123......4563.....789...2.....138.....1469......572..4.....4..........1..7.......
123......4563.....789...2.....138.....1469......572..4.......1......4....7.......
123......4563.....789....2....138.....1469......5724...7............4...........1
123......4563.....789....2....138.....1469......5724...7...............1.....4...
123......4563.....789....2....138.....1469......5724.......4....7...............1
123......4563.....789....2....138.....1469......5724..........1.7............4...
123......4563.....789....2....138.....1469......5724.......4...........1.7.......
123......4563.....789....2....138.....1469......5724..........1.....4....7.......
123......4563.....789....2....138.....1469......572..4.7............4.........1..
123......4563.....789....2....138.....1469......572..4.7.............1.......4...
123......4563.....789....2....138.....1469......572..4.....4....7.............1..
123......4563.....789....2....138.....1469......572..4......1...7............4...
123......4563.....789....2....138.....1469......572..4.....4.........1...7.......
123......4563.....789....2....138.....1469......572..4......1.......4....7.......
123......4563.....789.....2...138.....1469......5724...7............4..........1.
123......4563.....789.....2...138.....1469......5724...7..............1......4...
123......4563.....789.....2...138.....1469......5724.......4....7..............1.
123......4563.....789.....2...138.....1469......5724.........1..7............4...
123......4563.....789.....2...138.....1469......5724.......4..........1..7.......
123......4563.....789.....2...138.....1469......5724.........1......4....7.......
123......4563.....789.....2...138.....1469......572.4..7............4.........1..
123......4563.....789.....2...138.....1469......572.4..7.............1.......4...
123......4563.....789.....2...138.....1469......572.4......4....7.............1..
123......4563.....789.....2...138.....1469......572.4.......1...7............4...
123......4563.....789.....2...138.....1469......572.4......4.........1...7.......
123......4563.....789.....2...138.....1469......572.4.......1.......4....7.......