New and Improved? 275 Conjugacy Classes.

Programs which generate, solve, and analyze Sudoku puzzles

New and Improved? 275 Conjugacy Classes.

Postby Sojourner9 » Mon Jul 01, 2024 6:01 pm

Hi All,

Because of the the work I was doing regarding reorderings (3359232) I decided to go back and look at generating conjugacy classes using GAP.

Fraser's Home Page has moved. I updated the URL on Wikipedia. There he shows the input file and commands he typed into GAP to get the 275 conjugacy classes.
His input file, as described in his paper used a 9x9 array with the cells labeled 1 thru 81.
His input file shows cyclic notations of how he moved the cells around to described the reordering of the sudoku grid.
He never actually tell GAP that he is presenting a 9x9 array, just the moves.

As many may have done already, you can look at this input and figure out what he was trying to do.
And when completed you can look at the output of GAP to see what each class is doing.
The orderings he started with are:

  1. Transposition on the upper left to lower right axis.
  2. 90 degree rotation.
  3. swap columns 1 and 2.
  4. swap columns 2 and 3.
  5. swap columns 4 and 5.
  6. swap columns 5 and 6.
  7. swap columns 7 and 8.
  8. swap columns 8 and 9.
  9. swap stacks 1 and 2.
  10. swap stacks 2 and 3.
He didn't include anything for rows and bands because transposition took care of that, I assume.
I don't remember when I learned that I don't need a "swap columns 1 and 3" as repeated use of 3 and 4 gives all six permutation.
Of this Item 2 is not needed as the same can be accomplished with transposition and reflection of the columns.
I have thought for a long time that items 5, 6, 7, and 8 were also not needed.

But now to what I have done.

I repeat the exercise only this time I have rows and columns, like this:
Code: Select all
             Columns
        1 2 3 4 5 6 7 8 9
     10
     11
     12
     13
Rows 14
     15
     16
     17
     18
As with the original, we never actually tell GAP what we are representing, just how it moves.

So now I can provide the following input to GAP:
Code: Select all
sudoku_18 := Group( (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18), (1,2), (2,3), (1,4)(2,5)(3,6), (4,7)(5,8)(6,9) );
This has all the "redundent" orderings removed.
Running this I still get 275 conjugacy classes and their counts.
The only problem is that the order of the conjugacy classes changes.
I tried adding back (4,5), (5,6), (7,8), and (8 9) and I could not get the order corrected I even added the 90 degree turn and could not get it. I can still try later.

So a 90 degree turn should be transposition composed with reflection of the columns which should be:
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18) ∘ (1,9)(2,8)(3,7)(4,6)

Working right to left, 1>9>18, 2>8>17, 3>7>16, 4>6>15, 5>14, 6>4>13, 7>3>12, 8>2>11, 9>1>10.
So the 90 degree rotation reordering should be:

(1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)

Maybe I need to reverse the composition. But anyway here is an example of the conjugacy classes:
Code: Select all
  216     (10,12,11)(13,17,14,16)(15,18)
  648     (1,2,3)(13,17,14,16)(15,18)
  2916    (2,3)(8,9)(13,16)(14,18,15,17)
  5832    (1,2)(8,9)(10,11,12)(13,16)(14,18,15,17)
  11664   (2,3)(4,5,6)(8,9)(10,11,12)(13,16)(14,18,15,17)
  5832    (1,3)(4,5,6)(8,9)(13,16)(14,18,15,17)
  108     (11,12)(13,16)(14,17)(15,18)
  648     (1,2,3)(10,11)(13,16)(14,17)(15,18)
  1296    (1,2,3)(4,5,6)(10,12)(13,16)(14,17)(15,18)
  864     (1,2,3)(4,5,6)(7,8,9)(11,12)(13,16)(14,17)(15,18)
  216     (10,12)(13,17,14,18,15,16)
  1296    (1,2,3)(11,12)(13,17,14,18,15,16)
  2592    (1,2,3)(4,5,6)(10,11)(13,17,14,18,15,16)
  1728    (1,2,3)(4,5,6)(7,8,9)(10,12)(13,17,14,18,15,16)
  2916    (2,3)(8,9)(11,12)(13,16)(14,17)(15,18)
  5832    (2,3)(4,5,6)(8,9)(10,11)(13,16)(14,17)(15,18)
  5832    (2,3)(8,9)(10,12)(13,17,14,18,15,16)
  11664   (2,3)(4,5,6)(8,9)(11,12)(13,17,14,18,15,16)


The classes have no inherent ordering we would have to agree on a fixed input and then reorder our analyzes.
Unless I can fix the reordering problem.
I will try to show these in rowMap and colMap formats at some point.
Can we agree this is a much easier way to express the classes?

As can be seen, it is much clearer what is being moved in each conjugacy class, Agreed?
Sojourner9
 
Posts: 36
Joined: 10 March 2018

Re: New and Improved? 275 Conjugacy Classes.

Postby blue » Mon Jul 01, 2024 10:15 pm

Sojourner9 wrote:So a 90 degree turn should be transposition composed with reflection of the columns which should be:
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18) ∘ (1,9)(2,8)(3,7)(4,6)

Working right to left, 1>9>18, 2>8>17, 3>7>16, 4>6>15, 5>14, 6>4>13, 7>3>12, 8>2>11, 9>1>10.
So the 90 degree rotation reordering should be:

(1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)

The 90 degree turn should include 4-cycles.
Example: row1 -> col9 -> row9 -> col1 -> (loop)

Code: Select all
gap> q := (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18) * (1,9)(2,8)(3,7)(4,6);
(1,10,9,18)(2,11,8,17)(3,12,7,16)(4,13,6,15)(5,14)
gap>

Added trivia: You can get by with three generators ... swap cols 1 & 2, swap stacks 1 & 2, and 90 degree rotation.

Code: Select all
gap> sg := Group( (1,2), (1,4)(2,5)(3,6), (1,10,9,18)(2,11,8,17)(3,12,7,16)(4,13,6,15)(5,14) );
Group([ (1,2), (1,4)(2,5)(3,6), (1,10,9,18)(2,11,8,17)(3,12,7,16)(4,13,6,15)(5,14) ])
gap> [ Size(sg), NrConjugacyClasses(sg) ];
[ 3359232, 275 ]
blue
 
Posts: 1059
Joined: 11 March 2013

Re: New and Improved? 275 Conjugacy Classes.

Postby Sojourner9 » Wed Jul 03, 2024 1:28 am

blue wrote:The 90 degree turn should include 4-cycles.
Example: row1 -> col9 -> row9 -> col1 -> (loop)

Code: Select all
gap> q := (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18) * (1,9)(2,8)(3,7)(4,6);
(1,10,9,18)(2,11,8,17)(3,12,7,16)(4,13,6,15)(5,14)
gap>
Thanks Blue,
I added your 90 degree rotation into the code and added the redundants to emulate Frazer's input and I now see the counts in the expected order. :D
Now it is just a matter of verifying that they do the same work. :(
blue wrote:Added trivia: You can get by with three generators ... swap cols 1 & 2, swap stacks 1 & 2, and 90 degree rotation.

Code: Select all
gap> sg := Group( (1,2), (1,4)(2,5)(3,6), (1,10,9,18)(2,11,8,17)(3,12,7,16)(4,13,6,15)(5,14) );
Group([ (1,2), (1,4)(2,5)(3,6), (1,10,9,18)(2,11,8,17)(3,12,7,16)(4,13,6,15)(5,14) ])
gap> [ Size(sg), NrConjugacyClasses(sg) ];
[ 3359232, 275 ]
I'll bet the order is is not the same. ;)
I wonder how (2 3) is accomplished?

It figures the first time I try to demonstrate how to do something I would get it wrong. :oops:
And now I can see how to get GAP to do the "multiplication" for me.
I haven't done composition where all the numbers aren't in both entries. Is composition not the correct thing to do here?
Math isn't my first language and I only know about groups what I read in books.
I tried to audit a class is abstract algebra last fall and they directed me to concrete math instead. I will try again this fall.
I was trying to do composition to combine two permutations but obviously that is not what I should have done, or did I do it wrong.
It makes sense that there should be 4-cycles since it is a rotation, which is what I like about group theory. It is common sense and alchemy that works.
Sojourner9
 
Posts: 36
Joined: 10 March 2018

Re: New and Improved? 275 Conjugacy Classes.

Postby Sojourner9 » Wed Jul 03, 2024 8:54 am

I think the ordering of the 275 is still not right, the 90 degree entry is at 117 instead of 86.
Sojourner9
 
Posts: 36
Joined: 10 March 2018

Re: New and Improved? 275 Conjugacy Classes.

Postby blue » Wed Jul 03, 2024 8:23 pm

Sojourner9 wrote:I haven't done composition where all the numbers aren't in both entries. Is composition not the correct thing to do here?
(...)
I was trying to do composition to combine two permutations but obviously that is not what I should have done, or did I do it wrong.

"Composition" is right. You did it wrong, I guess.
Here's how one of the 4-cycles comes about.
The LHS arrow is from the "transpose" operation, and the RHS is from the horizontal reflection.
Code: Select all
 1 -> 10 -> 10
10 ->  1 ->  9
 9 -> 18 -> 18
18 ->  9 ->  1      (1,10,9,18)

BTW: I consider myself an amateur mathematician, at best.
Don't rely on me for correct terminology, etc.
I have to figure out GAP again, every time I (re)install it.
My group theory knowledge comes from Wikipedia and a 40 years ago, 9-week course, where the textbook was from the "Schaum's Outline" series.
blue
 
Posts: 1059
Joined: 11 March 2013

Re: New and Improved? 275 Conjugacy Classes.

Postby Sojourner9 » Thu Jul 04, 2024 4:35 pm

What is returned here is not immediately useful. If we don't have transposition in the class then 10 thru 18 becomes rowMap 1 thru 9 and 1 thru 9 remains colMap 1 thru 9.
When I deal with transposition in my code I just swap the rows and column indexes when I access the array.
So it makes no sense to have a cyclic notation where we swap one column with one row, except it swaps them all at the same time.
But I'll have to sort this out.

The next question is, Why do I want to do this?
I guess I thought that having a simpified 275 would help identify the classes in the reorderings of the grid, like coloin was talking about.
Also I wanted to show that I could convert the 275 to my rowMap/colMap since it is just one permutation of the 3359232 reorder group.

The thing is the conjugacy classes are not groups, just a single motion. You could consider these as generators and build up subgroups by repeated application.
So I will stop here because I have reached the limits of my understanding.
Sojourner9
 
Posts: 36
Joined: 10 March 2018

Re: New and Improved? 275 Conjugacy Classes.

Postby Sojourner9 » Mon Sep 02, 2024 7:42 pm

Hi all,

I was not able to solve the problem I was having with GAP.
No matter what input I gave it using the 18 element input I could not get an analogous output to that of the 81 element input.
The count for a class indicates there are that may different ways of representing the same thing.
I still got 275 classes and the same counts for each but the ordering of the classes and the representatives changed.
Even the 81 element classes will change order and representatives if the input changes.
So the order everyone is used to for the 275 is completely dependent on running that specific input.

Not sure why I can't get it to work. It is like a hash table/associative arrays/dictionaries in programming languages where they say not to expect the keys to be in a certain order.
I tried to take the 275 output for an 18 element input and compare the cyclic notations of each but that is when I found that the representatives for each had changed.

I took the original 275 output and converted that to rowMap/colMap format.
This was pretty easy I made a 9x9 array and filled with 1...81 and then did the action described by the class representative.
The I just looked for the row and column in the array that contained the number 1 and just read off the row which was 1...9 and the column which was 1,10,19,28,37,46,55,64,73 and converted that to 10...18.
If the row and column were swapped I changed the sign of the colMap.

Because it might be of use to someone, here is the Original 275 Conjugacy Classes in rowMap/colMap format.
Hidden Text: Show
Code: Select all
Class   1. 123456789  123456789 Size      1, 18383222420692992
Class   2. 123456978  123456978 Size     36, 0
Class   3. 123456897  123456789 Size     12, 0
Class   4. 123456978  123645978 Size    144, 0
Class   5. 123456789  123645978 Size     24, 0
Class   6. 123645978  123645978 Size    144, 0
Class   7. 123456897  312645978 Size     96, 21233664
Class   8. 123456789  312645897 Size     16, 107495424
Class   9. 123645897  312645978 Size    192, 4204224
Class  10. 312645978  312645978 Size     64, 2508084
Class  11. 123465798  123465798 Size    729, 0
Class  12. 123465879  312465798 Size   2916, 0
Class  13. 312465879  312465879 Size   2916, 0
Class  14. 123456789  132465789 Size     54, 0
Class  15. 123456978  132465978 Size    648, 0
Class  16. 123456897  132465789 Size    324, 0
Class  17. 123456789  132465978 Size    108, 0
Class  18. 123645978  132465978 Size   1296, 0
Class  19. 123645897  132465789 Size    648, 0
Class  20. 312645978  132465897 Size    864, 0
Class  21. 312645897  132465789 Size    432, 0
Class  22. 789123456  789123456 Size   5184, 323928
Class  23. 789123645  789123645 Size  20736, 162
Class  24. 789123564  789123456 Size  20736, 288
Class  25. 456789123  123456789 Size    144, 14837760
Class  26. 456789312  123456978 Size   1728, 2592
Class  27. 456789231  123456789 Size    288, 5184
Class  28. 456789123  123456978 Size    864, 2085120
Class  29. 456789312  123645978 Size   3456, 1296
Class  30. 456789123  123645978 Size   1728, 294912
Class  31. 456789231  312645978 Size   2304, 648
Class  32. 456789123  312645897 Size   1152, 6342480
Class  33. 456798132  123465798 Size   3888, 0
Class  34. 456798213  123465879 Size   7776, 0
Class  35. 456798213  312465798 Size  15552, 0
Class  36. 456798132  312465987 Size   7776, 0
Class  37. 789123456 -456789123 Size   1296, 30258432
Class  38. 789123645 -456789312 Size  15552, 0
Class  39. 789123564 -456789123 Size   7776, 0
Class  40. 789312645 -456789312 Size  10368, 1854
Class  41. 789132465 -456798132 Size  34992, 0
Class  42. 789132546 -456798213 Size  69984, 0
Class  43. 456789123 -123456789 Size  93312, 288
Class  44. 456789312 -123456978 Size 186624, 0
Class  45. 123456798  123456798 Size     81, 0
Class  46. 123456798  123645798 Size    648, 0
Class  47. 123645798  123645798 Size   1296, 0
Class  48. 123456879  312645798 Size    648, 0
Class  49. 123645879  312645798 Size   2592, 0
Class  50. 312645879  312645879 Size   1296, 0
Class  51. 123456798  132465798 Size    486, 0
Class  52. 123645798  132465798 Size   1944, 0
Class  53. 312645798  132465879 Size   1944, 0
Class  54. 132465798  132465798 Size    729, 0
Class  55. 798123456  798123456 Size  46656, 0
Class  56. 456798123  123456798 Size   3888, 0
Class  57. 456798123  123645798 Size  15552, 0
Class  58. 456798312  312645798 Size  15552, 0
Class  59. 456798123  132465798 Size  11664, 0
Class  60. 123789456  456123789 Size    324, 0
Class  61. 123789645  456123978 Size   2592, 0
Class  62. 123789564  456123789 Size   1296, 0
Class  63. 123789456  456123978 Size   1296, 0
Class  64. 123789645  456312978 Size   5184, 0
Class  65. 123789564  456312789 Size   1296, 0
Class  66. 123789456  456312978 Size   2592, 0
Class  67. 312789456  456123978 Size   1296, 0
Class  68. 312789645  456123897 Size   5184, 0
Class  69. 312789645  456312897 Size   5184, 0
Class  70. 123798465  456132798 Size   5832, 0
Class  71. 123798546  456132879 Size  11664, 0
Class  72. 312798465  456132879 Size  11664, 0
Class  73. 312798546  456132987 Size  23328, 0
Class  74. 132789465  456132798 Size  26244, 0
Class  75. 132789456  456132789 Size   5832, 0
Class  76. 132789645  456132978 Size  23328, 0
Class  77. 132789564  456132789 Size  11664, 0
Class  78. 132789456  456132978 Size  11664, 0
Class  79. 132798465  456123798 Size   2916, 155492352
Class  80. 132798546  456123879 Size  11664, 0
Class  81. 132798546  456312879 Size  11664, 0
Class  82. 123798456  456132789 Size   2916, 0
Class  83. 123798645  456132978 Size  11664, 0
Class  84. 312798456  456132978 Size  11664, 0
Class  85. 789123645 -987654132 Size 139968, 0
Class  86. 789123456 -987654321 Size  69984, 13056
Class  87. 789132654 -987645123 Size  69984, 0
Class  88. 789132465 -987645312 Size 139968, 0
Class  89. 132987654  123645789 Size    648, 0
Class  90. 132987465  123645978 Size   2592, 0
Class  91. 132987546  123645789 Size   1296, 0
Class  92. 132987654  123645978 Size   1296, 0
Class  93. 132987654  123456789 Size    108, 0
Class  94. 132987546  123456789 Size    216, 0
Class  95. 132987546  312645978 Size   1728, 0
Class  96. 132987654  312645897 Size    864, 0
Class  97. 132978645  123654798 Size   5832, 0
Class  98. 132978564  123654879 Size   2916, 0
Class  99. 132978564  312654798 Size   5832, 0
Class 100. 132978456  312654879 Size  11664, 0
Class 101. 123978654  123645789 Size    648, 0
Class 102. 123978465  123645978 Size   1296, 0
Class 103. 123978654  123456789 Size    108, 0
Class 104. 123978546  312645978 Size    864, 0
Class 105. 312978654  123645978 Size   2592, 0
Class 106. 312978546  123645789 Size   1296, 0
Class 107. 312978546  123456789 Size    216, 0
Class 108. 312978465  312645978 Size   1728, 0
Class 109. 123987645  123654798 Size   2916, 0
Class 110. 123987564  312654798 Size   5832, 0
Class 111. 312987645  123654879 Size   5832, 0
Class 112. 312987564  312654879 Size  11664, 0
Class 113. 654132987  789123645 Size  31104, 0
Class 114. 654132879  789123456 Size  15552, 0
Class 115. 654321987  789123645 Size  15552, 0
Class 116. 654321879  789123456 Size   7776, 0
Class 117. 654123978  789132654 Size  31104, 0
Class 118. 654123897  789132465 Size  15552, 0
Class 119. 654123789  789132546 Size  15552, 0
Class 120. 654123789  789132465 Size   7776, 0
Class 121. 123987654  123654789 Size    324, 0
Class 122. 123987465  123654978 Size   2592, 0
Class 123. 123987546  123654789 Size    648, 0
Class 124. 123987654  123654978 Size   1296, 0
Class 125. 123987546  312654978 Size   2592, 0
Class 126. 123987654  312654897 Size   1296, 0
Class 127. 312987654  123654978 Size   2592, 0
Class 128. 312987465  123654897 Size   5184, 0
Class 129. 312987546  123654789 Size   1296, 0
Class 130. 312987654  123654789 Size    648, 0
Class 131. 312987465  312654978 Size   5184, 0
Class 132. 312987654  312654978 Size   2592, 0
Class 133. 123978645  132654798 Size   1944, 0
Class 134. 123978564  132654879 Size    972, 449445888
Class 135. 312978645  132654879 Size   3888, 27648
Class 136. 312978564  132654987 Size   1944, 0
Class 137. 132978654  123654789 Size   2916, 0
Class 138. 132978465  123654978 Size  11664, 0
Class 139. 132978546  312654978 Size  11664, 0
Class 140. 132987645  132654798 Size   8748, 0
Class 141. 654123987  789123654 Size  69984, 0
Class 142. 654132978  789132645 Size  31104, 6480
Class 143. 654132789  789132456 Size  15552, 1728
Class 144. 654321978  789132645 Size  15552, 3456
Class 145. 654321789  789132456 Size   7776, 13824
Class 146. 123456798  123456789 Size     18, 0
Class 147. 123456879  123456978 Size    108, 0
Class 148. 123456879  123645978 Size    216, 0
Class 149. 123645798  123456789 Size     72, 0
Class 150. 123645879  123456978 Size    432, 0
Class 151. 123645879  123645978 Size    864, 0
Class 152. 123456987  312645978 Size    144, 0
Class 153. 123645987  312645978 Size    576, 0
Class 154. 312645798  123456978 Size    432, 0
Class 155. 312645987  123456789 Size     72, 0
Class 156. 312645798  123645978 Size    864, 0
Class 157. 312645879  312645978 Size    576, 0
Class 158. 123465789  123465798 Size    486, 0
Class 159. 123465978  123465879 Size   1944, 0
Class 160. 123465978  312465798 Size   3888, 0
Class 161. 123465789  312465987 Size    972, 0
Class 162. 312465978  123465987 Size   1944, 0
Class 163. 312465978  312465879 Size   3888, 0
Class 164. 132465798  123456789 Size     54, 0
Class 165. 132465879  123456978 Size    324, 0
Class 166. 132465879  123645978 Size    648, 0
Class 167. 132465987  312645978 Size    432, 0
Class 168. 132465798  132465789 Size   1458, 0
Class 169. 132465879  132465978 Size   2916, 0
Class 170. 798123456  789123456 Size  31104, 0
Class 171. 798123645  789123645 Size  62208, 0
Class 172. 456798123  123456789 Size    432, 0
Class 173. 456798312  123456978 Size   2592, 0
Class 174. 456798312  123645978 Size   5184, 0
Class 175. 456798231  312645978 Size   3456, 0
Class 176. 456789132  123465798 Size  11664, 0
Class 177. 456789213  312465798 Size  23328, 0
Class 178. 123456798  789123456 Size   1296, 0
Class 179. 123456879  789123645 Size   2592, 0
Class 180. 123645798  789123456 Size   5184, 0
Class 181. 123645879  789123645 Size  10368, 0
Class 182. 312645798  789123645 Size  10368, 0
Class 183. 312645987  789123456 Size   5184, 0
Class 184. 132465798  789123456 Size   3888, 0
Class 185. 132465879  789123645 Size   7776, 0
Class 186. 789123456 -456798123 Size  11664, 0
Class 187. 789123645 -456798312 Size  46656, 0
Class 188. 789312645 -456798312 Size  46656, 0
Class 189. 789132465 -456789132 Size  34992, 0
Class 190. 456789123 -123456798 Size 279936, 0
Class 191. 123798456  456123789 Size   1944, 0
Class 192. 123798645  456123978 Size   3888, 0
Class 193. 123798456  456312789 Size   3888, 0
Class 194. 123798645  456312978 Size   7776, 0
Class 195. 312798456  456123978 Size   7776, 0
Class 196. 312798564  456123789 Size   3888, 0
Class 197. 312798456  456312978 Size  15552, 0
Class 198. 312798564  456312789 Size   7776, 0
Class 199. 123789465  456132798 Size  17496, 0
Class 200. 312789465  456132879 Size  34992, 0
Class 201. 132789456  456123789 Size   1944, 0
Class 202. 132789645  456123978 Size   7776, 0
Class 203. 132789564  456123789 Size   3888, 0
Class 204. 132789456  456123978 Size   3888, 0
Class 205. 132789456  456312789 Size   3888, 0
Class 206. 132789645  456312978 Size  15552, 0
Class 207. 132789564  456312789 Size   7776, 0
Class 208. 132789456  456312978 Size   7776, 0
Class 209. 132798465  456132798 Size  17496, 0
Class 210. 132798546  456132879 Size  34992, 0
Class 211. 789123645 -897654132 Size 209952, 0
Class 212. 789132654 -897645123 Size  23328, 0
Class 213. 789132465 -897645312 Size  93312, 0
Class 214. 789132546 -897645123 Size  46656, 0
Class 215. 789132654 -897645312 Size  46656, 0
Class 216. 132897654  123645789 Size   1944, 0
Class 217. 132897465  123645978 Size   3888, 0
Class 218. 132897654  123456789 Size    324, 0
Class 219. 132897546  312645978 Size   2592, 0
Class 220. 132879645  123654798 Size   8748, 0
Class 221. 132879564  312654798 Size  17496, 0
Class 222. 123879654  123645789 Size    432, 0
Class 223. 123879465  123645978 Size    864, 0
Class 224. 123879546  123645897 Size    432, 0
Class 225. 123879546  123645789 Size    216, 0
Class 226. 123879654  123456789 Size     72, 0
Class 227. 123879546  123456789 Size     36, 0
Class 228. 123879546  312645978 Size    288, 0
Class 229. 123879654  312645897 Size    576, 0
Class 230. 312879654  123645978 Size   1728, 0
Class 231. 312879546  123645789 Size    432, 0
Class 232. 312879546  123645978 Size    864, 0
Class 233. 312879465  123645789 Size    864, 0
Class 234. 312879546  123456789 Size     72, 0
Class 235. 312879465  123456789 Size    144, 0
Class 236. 312879465  312645978 Size   1152, 0
Class 237. 312879546  312645897 Size    576, 0
Class 238. 123897645  123654798 Size    972, 0
Class 239. 123897564  123654879 Size   1944, 0
Class 240. 123897564  312654798 Size   3888, 0
Class 241. 123897645  312654987 Size   1944, 0
Class 242. 312897645  123654879 Size   1944, 0
Class 243. 312897564  123654987 Size   3888, 0
Class 244. 312897564  312654879 Size   7776, 0
Class 245. 312897645  312654798 Size   3888, 0
Class 246. 654132897  789123645 Size  20736, 0
Class 247. 654132789  789123564 Size  10368, 0
Class 248. 654132978  789123456 Size  10368, 0
Class 249. 654132789  789123456 Size   5184, 0
Class 250. 654321897  789123645 Size  10368, 0
Class 251. 654321789  789123564 Size   5184, 0
Class 252. 654321978  789123456 Size   5184, 0
Class 253. 654321789  789123456 Size   2592, 0
Class 254. 654123879  789132654 Size  46656, 0
Class 255. 654123987  789132465 Size  23328, 0
Class 256. 123897654  123654789 Size    972, 0
Class 257. 123897465  123654978 Size   3888, 0
Class 258. 123897546  312654978 Size   3888, 0
Class 259. 312897654  123654978 Size   7776, 0
Class 260. 312897546  123654789 Size   1944, 0
Class 261. 312897465  312654978 Size   7776, 0
Class 262. 123879645  132654798 Size   2916, 0
Class 263. 312879645  132654879 Size   5832, 0
Class 264. 132879654  123654789 Size   1944, 0
Class 265. 132879465  123654978 Size   7776, 0
Class 266. 132879546  123654897 Size   3888, 0
Class 267. 132879546  123654789 Size    972, 0
Class 268. 132879546  312654978 Size   3888, 0
Class 269. 132879654  312654897 Size   7776, 0
Class 270. 132897645  132654798 Size   2916, 0
Class 271. 132897564  132654879 Size   5832, 0
Class 272. 654123897  789123654 Size  46656, 0
Class 273. 654123789  789123465 Size  23328, 0
Class 274. 654132879  789132645 Size  46656, 0
Class 275. 654321879  789132645 Size  23328, 0
Total Size =                        3359232

For some random reason I was looking at Mathmagics eulogy thread and it took me to the reddit equivalent.
Anyway this took me to his posts on math.stackexchange.
Looking as some of his posts I found this one List Conjugacy Classes in GAP?
Here is is asking the question about how to see all the representatives for a class.

As a last ditch effort, I tried to take the original 275 and make a 18 element cyclic notation equivalent starting with the rowMap/colMap list from above.
So I have to figure out how to do the composition correctly. and all in all it was a real pain to write and it took me a week.
I learned that the 18 element is like a camera looking at a never changing grid where the 81 element classes are a fixed camera and it is moving the grid.
So to class that represents a 90 degrees clockwise rotation of the grid should be represented by a class that represents a 90 degree counter-clockwise rotate using the 18 elements. Or is that anti-clockwise?
I fed this list into GAP and was going to try to check each entry against all the representative of all the classes to try to figure out the scramble table for the classes.
But I just got tired of working on this and did not want learn to program GAP that much.

I am on the precipice of a rant about GAP, but I will try to keep my cool. 8-)
To use GAP you have to enter the GAP environment where it give you a prompt and you have to type in your entire code.
Even if you save off all the code outside of GAP and use cut and paste on the input, you still have to write the code and process the output.
Say asked for all the members of a class I still have to copy and paste the output into an editor to make the it pretty.
And then I have to learn the GAP programming language, GAPanese? :roll:
I already have a really good language that can maniputate the output and format the display.
The work of editing the output to make it compatible input to my program is ridiculous.

Has anyone been able make GAP as a library into your favorite programming language?
Or at least found a better way to work with GAP then what I described?
Sojourner9
 
Posts: 36
Joined: 10 March 2018

Re: New and Improved? 275 Conjugacy Classes.

Postby BlazeRaven » Tue Sep 17, 2024 10:04 pm

When you mention the order of the conjugacy classes changing depending on the input, does that affect how we interpret the classes themselves, or is it just a matter of reordering them for easier comparison?
BlazeRaven
 
Posts: 1
Joined: 17 September 2024


Return to Software