without specifically trying to find a particular network, this solution is quite lengthy
- Code: Select all
+------------------+---------------+---------------------+
| 3 68 4 | 9 18 56 | 2 158 7 |
| 9 5 2 | 348 148 7 | 1348 1348 6 |
| 7 1 6(8) | 348 2 56 | 3458 9 35-8 |
+------------------+---------------+---------------------+
| 6 (28) 5(8) | 7 9 4 | 35 235 1 |
| 1 7 3 | 5 6 2 | 48(9) 48 (89) |
| 25 4 9 | 1 3 8 | 6 7 25 |
+------------------+---------------+---------------------+
| 2458 2369 56 | 2468 458 1 | 7 2358 23589 |
| 2458 (29) 1 | 248 7 3 | 58(9) 6 2589 |
| 258 236 7 | 268 58 9 | 1358 12358 4 |
+------------------+---------------+---------------------+
#1...(8=9)r5c9 - (9)r5c7 = (9)r8c7 - (9=2)r8c2 - (2=8)r4c2 - (8)r4c3 = (8)r3c3; r3c9 <> 8
---------------------
- Code: Select all
+-------------------+------------------+---------------------+
| 3 (68) 4 | 9 18 (56) | 2 18(5) 7 |
| 9 5 2 | 348 148 7 | 1348 1348 6 |
| 7 1 6(8) | 348 2 56 | 3458 9 35 |
+-------------------+------------------+---------------------+
| 6 28 (58) | 7 9 4 | 35 23-5 1 |
| 1 7 3 | 5 6 2 | 489 48 89 |
| (25) 4 9 | 1 3 8 | 6 7 25 |
+-------------------+------------------+---------------------+
| 2458 2369 56 | 2468 458 1 | 7 2358 23589 |
| 2458 29 1 | 248 7 3 | 589 6 2589 |
| (258) 236 7 | 268 (58) 9 | 1358 1238-5 4 |
+-------------------+------------------+---------------------+
#2...(58=2)r9c15 - (2=5)r6c1 - (5=8)r4c3 - (8)r3c3 = (8-6)r1c2 = (6-5)r1c6 = (5)r1c8; r4c8 <> 5 and r9c8 <>5
-----------------------
this is a continuos loop
- Code: Select all
+-------------------+------------------+----------------------+
| 3 8(6) 4 | 9 18 (56) | 2 18(5) 7 |
| 9 5 2 | 348 148 7 | 1348 1348 6 |
| 7 1 8(6) | 348 2 56 | 3458 9 35 |
+-------------------+------------------+----------------------+
| 6 28 58 | 7 9 4 | 35 23 1 |
| 1 7 3 | 5 6 2 | 489 48 89 |
| 25 4 9 | 1 3 8 | 6 7 25 |
+-------------------+------------------+----------------------+
| 248-5 2369 (56) | 2468 48-5 1 | 7 238(5) 2389-5 |
| 2458 29 1 | 248 7 3 | 589 6 2589 |
| 258 236 7 | 268 58 9 | 1358 1238 4 |
+-------------------+------------------+----------------------+
#3...(5=6)r7c3 - (6)r3c3 = (6)r1c2 - (6=5)r1c6 - (5)r1c8 = (5)r7c7; r7c159 <> 5
------------------------------
leads to this grid
- Code: Select all
+----------------+---------------+------------------+
| 3 68 4 | 9 18 56 | 2 158 7 |
| 9 5 2 | 348 148 7 | 1348 1348 6 |
| 7 1 68 | 348 2 56 | 3458 9 35 |
+----------------+---------------+------------------+
| 6 28 58 | 7 9 4 | 35 23 1 |
| 1 7 3 | 5 6 2 | 489 48 89 |
| 25 4 9 | 1 3 8 | 6 7 25 |
+----------------+---------------+------------------+
| 248 2369 56 | 2468 48 1 | 7 2358 2389 |
| 2458 29 1 | 248 7 3 | 589 6 2589 |
| 28 236 7 | 268 5 9 | 138 1238 4 |
+----------------+---------------+------------------+
from here its #4...xy wing (235)r346c89; r2c8 <>3
#5... skyscraper on candidate 5... r4c7 = r4c3 - r7c3 = r7c8; r8c8 <> 5
#6... xy-wing (289)r89c127; r8c1 and r9c78 <> 8
#7... xyz-wing (123)r479c78; r9c8 <> 3
#8... xy-wing (123)r49c78; r4c7 <> 3
then singles to end.