I see blue's solution as a 2x Kraken Cell on r7c83. He just partitioned the combinations instead of treating the candidates serially.
What caught my attention was his "Skyscraper". Viewed another way, it's an oddagon with guardian cells r1c1 and r6c4.
Here's where it gets interesting ... and uses blue's partitioning.
- Code: Select all
+--------------------------------------------------------------+
| g189 3 189 | 5 69 4 | 26 7 268 |
| 6 5 4 | 7 8 2 | 3 19 19 |
| *89 2 7 | 3 1 *69 | 4 68 5 |
|--------------------+--------------------+--------------------|
| 7 8 3 | 1 4 *69 | 269 5 269 |
| *29 1 6 | 8 *29 5 | 7 3 4 |
| 5 4 29 | g269 3 7 | 8 169 169 |
|--------------------+--------------------+--------------------|
| 1248 679 128 | 2469 269 3 | 5 2689 6789 |
| 3 679 28 | 269 5 18 | 169 4 6789 |
| 248 69 5 | 2469 7 18 | 169 2689 3 |
+--------------------------------------------------------------+
# 68 eliminations remain
9 r6c4 - 9r5c5
||
(9-1)r1c1 = r1c3 - 1r7c3 = 28r7c38 - 2r7c5 = (2-9)r5c5
||
= 169r267c8 - 6r3c8 = r3c6 - (6=9)r4c6 - 9r5c5
_