- Code: Select all
*-----------*
|47.|..5|...|
|..1|...|..2|
|..8|.14|.5.|
|---+---+---|
|..2|1..|.6.|
|9..|...|..3|
|.6.|..8|2..|
|---+---+---|
|.1.|63.|8..|
|5..|...|6..|
|...|5..|.71|
*-----------* # Original
- Code: Select all
# after SSTS, my solver uses a Forcing Chain/Net on [r2c1] to get ...
# [r1c4]=[r5c5]=2, [r5c6]=[r9c3]=6, [r1c5]<>9, [r3c9]<>9
# four assignments and ten eliminations total
*--------------------------------------------------------------------*
| 4 7 369 | 2389 2689 5 | 139 1389 689 |
|*36 5 1 | 3789 6789 3679 | 3479 3489 2 |
| 236 239 8 | 379 1 4 | 379 5 679 |
|----------------------+----------------------+----------------------|
| 378 348 2 | 1 4579 379 | 4579 6 4789 |
| 9 48 457 | 247 24567 267 | 1457 148 3 |
| 1 6 3457 | 3479 4579 8 | 2 49 479 |
|----------------------+----------------------+----------------------|
| 27 1 479 | 6 3 279 | 8 249 5 |
| 5 23489 3479 | 24789 24789 1 | 6 2349 49 |
| 2368 23489 3469 | 5 2489 29 | 349 7 1 |
*--------------------------------------------------------------------*
There are many chains/loops possible. Do you see a really interesting one? Anything else that's simpler than my Forcing Chain/Net to advance this puzzle?
Ideally: simple chains/loops to show [r4c6]<>7|9 => [r4c6]=3 => Singles to solve puzzle