.
I can't see any problem with your process. The only thing is, when you try to solve harder puzzles, you need more powerful techniques - i.e. in general some kind of chains
(Also: when you post a puzzle, instead of putting an external link, could you use one of the standard forms below (puzzle or PM)?
Starting from the original puzzle:
- Code: Select all
+-------+-------+-------+
! 9 . . ! 2 3 8 ! . 7 . !
! . . . ! 6 . . ! . . 8 !
! . 3 . ! 1 . . ! . . . !
+-------+-------+-------+
! . . . ! 8 2 9 ! . . . !
! . . 2 ! 7 6 1 ! . 9 . !
! . 6 9 ! 3 5 4 ! . . 7 !
+-------+-------+-------+
! . . . ! 5 1 6 ! 7 . . !
! 6 . . ! 4 8 2 ! 5 . . !
! . 5 . ! 9 7 3 ! . . 4 !
+-------+-------+-------+
9..238.7....6....8.3.1........829.....2761.9..69354..7...5167..6..4825...5.973..4
SER = 8.4, W = 5, tW = 5, Z = 8
- Code: Select all
whip[1]: c7n9{r3 .} ==> r3c9≠9
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 9 14 1456 ! 2 3 8 ! 146 7 156 !
! 12457 1247 1457 ! 6 49 57 ! 12349 12345 8 !
! 24578 3 45678 ! 1 49 57 ! 2469 2456 256 !
+-------------------+-------------------+-------------------+
! 13457 147 13457 ! 8 2 9 ! 1346 13456 1356 !
! 3458 48 2 ! 7 6 1 ! 348 9 35 !
! 18 6 9 ! 3 5 4 ! 128 128 7 !
+-------------------+-------------------+-------------------+
! 2348 2489 348 ! 5 1 6 ! 7 238 239 !
! 6 179 137 ! 4 8 2 ! 5 13 139 !
! 128 5 18 ! 9 7 3 ! 1268 1268 4 !
+-------------------+-------------------+-------------------+
150 candidates.
- Code: Select all
finned-x-wing-in-columns: n2{c9 c2}{r7 r3} ==> r3c1≠2
whip[1]: r3n2{c9 .} ==> r2c7≠2, r2c8≠2
finned-x-wing-in-rows: n5{r5 r1}{c9 c1} ==> r3c1≠5, r2c1≠5
whip[1]: c1n5{r5 .} ==> r4c3≠5
+-------------------+-------------------+-------------------+
! 9 14 1456 ! 2 3 8 ! 146 7 156 !
! 1247 1247 1457 ! 6 49 57 ! 1349 1345 8 !
! 478 3 45678 ! 1 49 57 ! 2469 2456 256 !
+-------------------+-------------------+-------------------+
! 13457 147 1347 ! 8 2 9 ! 1346 13456 1356 !
! 3458 48 2 ! 7 6 1 ! 348 9 35 !
! 18 6 9 ! 3 5 4 ! 128 128 7 !
+-------------------+-------------------+-------------------+
! 2348 2489 348 ! 5 1 6 ! 7 238 239 !
! 6 179 137 ! 4 8 2 ! 5 13 139 !
! 128 5 18 ! 9 7 3 ! 1268 1268 4 !
+-------------------+-------------------+-------------------+
At this point, the only difference with your PM is candidate n1r2c1. It can be eliminated by a bivalue-chain[3] that also eliminates n1r4c2.
- Code: Select all
biv-chain[3]: r1c2{n1 n4} - r5c2{n4 n8} - r6c1{n8 n1} ==> r2c1≠1, r4c2≠1
You can now apply two more bivalue-chains:
- Code: Select all
biv-chain[3]: r6c1{n1 n8} - b1n8{r3c1 r3c3} - r9c3{n8 n1} ==> r4c3≠1, r9c1≠1
biv-chain[4]: r3n8{c1 c3} - b1n6{r3c3 r1c3} - r1n5{c3 c9} - r5n5{c9 c1} ==> r5c1≠8
Resolution state RS2
But you need more than bivalue-chains if you want to go farther than RS2.
Here is an idea of what you can get if you use the full power of whips (and the simplest-first strategy):
- Code: Select all
t-whip[4]: r9c1{n2 n8} - r7n8{c3 c8} - r6n8{c8 c7} - r6n2{c7 .} ==> r9c8≠2
z-chain[5]: c3n6{r3 r1} - c3n5{r1 r2} - c6n5{r2 r3} - r3n7{c6 c1} - r3n8{c1 .} ==> r3c3≠4
t-whip[5]: r3n8{c1 c3} - c3n6{r3 r1} - r1n5{c3 c9} - r3n5{c9 c6} - r3n7{c6 .} ==> r3c1≠4
biv-chain[3]: r3c1{n7 n8} - r9c1{n8 n2} - b1n2{r2c1 r2c2} ==> r2c2≠7
t-whip[5]: c3n6{r1 r3} - r3n8{c3 c1} - r3n7{c1 c6} - r2c6{n7 n5} - c3n5{r2 .} ==> r1c3≠1, r1c3≠4
finned-x-wing-in-rows: n4{r1 r5}{c7 c2} ==> r4c2≠4
singles ==> r4c2=7, r8c3=7
whip[1]: r8n3{c9 .} ==> r7c8≠3, r7c9≠3
biv-chain[4]: r6c1{n1 n8} - c2n8{r5 r7} - r7c8{n8 n2} - b6n2{r6c8 r6c7} ==> r6c7≠1
t-whip[4]: r7c8{n2 n8} - c2n8{r7 r5} - r6c1{n8 n1} - r6c8{n1 .} ==> r3c8≠2
t-whip[4]: r5c9{n5 n3} - c7n3{r5 r2} - c7n9{r2 r3} - r3n2{c7 .} ==> r3c9≠5
biv-chain[5]: r8n3{c9 c8} - b3n3{r2c8 r2c7} - c7n9{r2 r3} - r3n2{c7 c9} - r7c9{n2 n9} ==> r8c9≠9
singles ==> r7c9=9, r8c2=9, r9c3=1, r3c9=2
biv-chain[3]: r1n4{c7 c2} - r2c3{n4 n5} - r1c3{n5 n6} ==> r1c7≠6
naked-pairs-in-a-row: r1{c2 c7}{n1 n4} ==> r1c9≠1
biv-chain[4]: r5c9{n3 n5} - r1n5{c9 c3} - r2c3{n5 n4} - r4c3{n4 n3} ==> r4c7≠3, r4c8≠3, r4c9≠3, r5c1≠3
biv-chain[4]: r1c9{n6 n5} - r5c9{n5 n3} - c7n3{r5 r2} - b3n9{r2c7 r3c7} ==> r3c7≠6
naked-pairs-in-a-row: r3{c5 c7}{n4 n9} ==> r3c8≠4
naked-pairs-in-a-block: b3{r1c9 r3c8}{n5 n6} ==> r2c8≠5
biv-chain[3]: c3n8{r7 r3} - r3n6{c3 c8} - r9c8{n6 n8} ==> r9c1≠8, r7c8≠8
stte
The solution shows only z-chains and t-whips are needed.
If you prefer to use only reversible chains with no embedded Subsets, you'll find a solution in Z8 (simpler but longer chains):
- Code: Select all
z-chain[5]: r9c1{n2 n8} - r6c1{n8 n1} - r6c8{n1 n8} - b9n8{r7c8 r9c7} - r9n6{c7 .} ==> r9c8≠2
z-chain[5]: c3n6{r3 r1} - c3n5{r1 r2} - c6n5{r2 r3} - r3n7{c6 c1} - r3n8{c1 .} ==> r3c3≠4
z-chain[7]: r9c3{n1 n8} - c2n8{r7 r5} - c7n8{r5 r6} - c7n2{r6 r3} - c7n9{r3 r2} - r2n3{c7 c8} - r8c8{n3 .} ==> r9c7≠1
z-chain[4]: r9n1{c3 c8} - r9n6{c8 c7} - r1n6{c7 c9} - r1n5{c9 .} ==> r1c3≠1
z-chain[6]: r8c8{n1 n3} - r2n3{c8 c7} - c7n1{r2 r1} - r1c2{n1 n4} - r5c2{n4 n8} - r6c1{n8 .} ==> r6c8≠1
z-chain[8]: c2n2{r2 r7} - r9c1{n2 n8} - r3n8{c1 c3} - c3n6{r3 r1} - r1n5{c3 c9} - r5n5{c9 c1} - r5n4{c1 c7} - r1n4{c7 .} ==> r2c2≠4
z-chain[8]: r6n2{c7 c8} - b6n8{r6c8 r5c7} - c2n8{r5 r7} - r7n9{c2 c9} - c9n2{r7 r3} - c7n2{r3 r9} - r9c1{n2 n8} - r6c1{n8 .} ==> r6c7≠1
singles ==> r6c1=1, r5c2=8
finned-x-wing-in-rows: n4{r5 r1}{c7 c1} ==> r3c1≠4, r2c1≠4
naked-triplets-in-a-column: c1{r2 r3 r9}{n2 n7 n8} ==> r7c1≠8, r7c1≠2, r4c1≠7
whip[1]: c1n7{r3 .} ==> r2c2≠7, r2c3≠7, r3c3≠7
biv-chain[5]: r1n5{c9 c3} - b1n6{r1c3 r3c3} - b1n8{r3c3 r3c1} - r3n7{c1 c6} - b2n5{r3c6 r2c6} ==> r2c8≠5
z-chain[6]: c3n6{r1 r3} - c3n5{r3 r2} - r2c6{n5 n7} - r2c1{n7 n2} - r2c2{n2 n1} - r1c2{n1 .} ==> r1c3≠4
finned-x-wing-in-rows: n4{r1 r5}{c7 c2} ==> r4c2≠4
singles ==> r4c2=7, r8c3=7
whip[1]: r8n3{c9 .} ==> r7c8≠3, r7c9≠3
naked-pairs-in-a-column: c8{r6 r7}{n2 n8} ==> r9c8≠8, r3c8≠2
z-chain[4]: r2n3{c8 c7} - r5c7{n3 n4} - r1n4{c7 c2} - r1n1{c2 .} ==> r2c8≠1
biv-chain[4]: r2c8{n4 n3} - r8n3{c8 c9} - r5c9{n3 n5} - c8n5{r4 r3} ==> r3c8≠4
hidden-pairs-in-a-row: r3{n4 n9}{c5 c7} ==> r3c7≠6, r3c7≠2
stte
However, you can also cdecide you don't want to use chains with z-candidates.
Then you'll get a solution in tW5:
- Code: Select all
t-whip[4]: r9c1{n2 n8} - r7n8{c3 c8} - r6n8{c8 c7} - r6n2{c7 .} ==> r9c8≠2
t-whip[5]: r3n8{c1 c3} - c3n6{r3 r1} - r1n5{c3 c9} - r3n5{c9 c6} - r3n7{c6 .} ==> r3c1≠4
biv-chain[3]: r3c1{n7 n8} - r9c1{n8 n2} - b1n2{r2c1 r2c2} ==> r2c2≠7
t-whip[5]: c3n6{r1 r3} - r3n8{c3 c1} - r3n7{c1 c6} - r2c6{n7 n5} - c3n5{r2 .} ==> r1c3≠1, r1c3≠4
finned-x-wing-in-rows: n4{r1 r5}{c7 c2} ==> r4c2≠4
singles ==> r4c2=7, r8c3=7
whip[1]: r8n3{c9 .} ==> r7c8≠3, r7c9≠3
biv-chain[4]: r6c1{n1 n8} - c2n8{r5 r7} - r7c8{n8 n2} - b6n2{r6c8 r6c7} ==> r6c7≠1
t-whip[4]: r7c8{n2 n8} - c2n8{r7 r5} - r6c1{n8 n1} - r6c8{n1 .} ==> r3c8≠2
t-whip[4]: r5c9{n5 n3} - c7n3{r5 r2} - c7n9{r2 r3} - r3n2{c7 .} ==> r3c9≠5
biv-chain[5]: r8n3{c9 c8} - b3n3{r2c8 r2c7} - c7n9{r2 r3} - r3n2{c7 c9} - r7c9{n2 n9} ==> r8c9≠9
singles ==> r7c9=9, r8c2=9, r9c3=1, r3c9=2
biv-chain[3]: r1n4{c7 c2} - r2c3{n4 n5} - r1c3{n5 n6} ==> r1c7≠6
naked-pairs-in-a-row: r1{c2 c7}{n1 n4} ==> r1c9≠1
biv-chain[4]: r5c9{n3 n5} - r1n5{c9 c3} - r2c3{n5 n4} - r4c3{n4 n3} ==> r4c7≠3, r4c8≠3, r4c9≠3, r5c1≠3
biv-chain[4]: r1c9{n6 n5} - r5c9{n5 n3} - c7n3{r5 r2} - b3n9{r2c7 r3c7} ==> r3c7≠6
naked-pairs-in-a-row: r3{c5 c7}{n4 n9} ==> r3c8≠4, r3c3≠4
naked-pairs-in-a-block: b3{r1c9 r3c8}{n5 n6} ==> r2c8≠5
biv-chain[3]: c3n8{r7 r3} - r3n6{c3 c8} - r9c8{n6 n8} ==> r9c1≠8, r7c8≠8
stte