Before Carcul terrifies us with his amazing chains, here is my effort to solve this one...
(I'm no chain notation expert though, so the notation police please feel free to correct me...)
After basic techniques (SSTS):
- Code: Select all
*--------------------------------------------------------------------*
|*569 *156 2 |*156 569 8 | 3 7 4 |
|*3589 1358 *589 | 4 7 1359 |#58 2 6 |
| 4 -73568 *578 | 2 356 356 |#58 1 9 |
|----------------------+----------------------+----------------------|
| 2 @3578 4 |@5678 3568 356 | 1 9 58 |
| 1 58 6 | 58 29 29 | 4 3 7 |
| 358 9 578 | 1578 4 135 | 2 6 58 |
|----------------------+----------------------+----------------------|
|*5689 2 1 |*568 568 7 |*69 4 3 |
| 7 568 589 | 3 1 4 | 69 58 2 |
| 568 4 3 | 9 2568 256 | 7 58 1 |
*--------------------------------------------------------------------*
There is a potential UR {58} in r23c37 => r23c3 must have 7|9
[r3c2](-7-[r4c2]=7=[r4c4])-7|9=[r23c3]-9-[r12c1]=9=[r7c1]-9-[r7c7]-6-[r7c4]=6=[r1c4]-6-[r1c12]=6=[r3c2]
Therefore r3c2<>7
After a few more singles/locked candidates:
- Code: Select all
*-----------------------------------------------------------*
| 56 *56 2 | 1 9 8 | 3 7 4 |
| 89 1 89 | 4 7 3 | 5 2 6 |
| 4 3 7 | 2 56 56 | 8 1 9 |
|-------------------+-------------------+-------------------|
| 2 7 4 | 568 3 56 | 1 9 58 |
| 1 *58 6 |*58 2 9 | 4 3 7 |
| 3 9 58 | 7 4 1 | 2 6 58 |
|-------------------+-------------------+-------------------|
| 5689 2 1 |*56 568 7 |*69 4 3 |
| 7 -658 589 | 3 1 4 |*69 58 2 |
| 568 4 3 | 9 568 2 | 7 58 1 |
*-----------------------------------------------------------*
There is a relatively short xy-chain:
[r8c2]-6-[r8c7]=6=[r7c7]-6-[r7c4]-5-[r5c4]=5=[r5c2]-5-[r1c2]-6-[r8c2]
Therefore r8c2<>6, and the puzzle is solved.
Or alternatively, we can do an ALS-xyz:
- Code: Select all
*-----------------------------------------------------------*
| 56 *56 2 | 1 9 8 | 3 7 4 |
| 89 1 @89 | 4 7 3 | 5 2 6 |
| 4 3 7 | 2 56 56 | 8 1 9 |
|-------------------+-------------------+-------------------|
| 2 7 4 | 568 3 56 | 1 9 58 |
| 1 -58 6 |*58 2 9 | 4 3 7 |
| 3 9 @58 | 7 4 1 | 2 6 58 |
|-------------------+-------------------+-------------------|
| 5689 2 1 |*56 568 7 | 69 4 3 |
| 7 #568 #589 | 3 1 4 | 69 #58 2 |
| 568 4 3 | 9 568 2 | 7 58 1 |
*-----------------------------------------------------------*
A=r1c2={56}
B=r26c3={589}
C=r8c238={5689}
x (common to A,B)=5
y (restricted common to A,C)=6
z (restricted common to B,C)=9
Therefore r5c2<>5, and the puzzle is solved.
Solution:
562198374
918473526
437265819
274836195
186529437
395741268
821657943
759314682
643982751