Here are the three puzzle solved cell statuses in line format (which is more convenient for others to use) :
...61.45.1.48.567.9653472816.1...3943794615284.2..371621..36.45.932.4167.461...32
.124.95.6.46.2..19..96712.493.7.6842...9.46..46...2.91.94.671..17329.46.6.81439..
4..8931...9.124.3..136..94.95....67163..1.4.514..6..93.84..631...1.8..6..692.1...
The solution to the first puzzle was correctly described by Jason.
The simplest solution I could find for the second puzzle (ignoring basics as described by SteveC) takes two (non-basic) moves :
- Code: Select all
*--------------------------------------------------------------*
| 378 1 2 | 4 38 9 | 5 378 6 |
| 78-3 4 6 |*358 2 58 |*37 1 9 |
| 358 58 9 | 6 7 1 | 2 38 4 |
|--------------------+--------------------+--------------------|
| 9 3 15 | 7 15 6 | 8 4 2 |
| 28 28 17 | 9 13 4 | 6 357 357 |
| 4 6 57 |*38 58-3 2 |*37 9 1 |
|--------------------+--------------------+--------------------|
| 25 9 4 | 58 6 7 | 1 235 358 |
| 1 7 3 | 2 9 58 | 4 6 58 |
| 6 25 8 | 1 4 3 | 9 257 57 |
*--------------------------------------------------------------*
There is an XWing in 3's c47 r26 (the cells marked * in the diagram), which removes the 3's in r2c1 and r6c5. I assume you are familiar with X Wings.
- Code: Select all
*--------------------------------------------------------------*
| 378 1 2 | 4 a38 9 | 5 37-8 6 |
| 78 4 6 |b358 2 58 |c37 1 9 |
| 358 58 9 | 6 7 1 | 2 d38 4 |
|--------------------+--------------------+--------------------|
| 9 3 15 | 7 15 6 | 8 4 2 |
| 28 28 17 | 9 13 4 | 6 357 357 |
| 4 6 57 | 38 58 2 | 37 9 1 |
|--------------------+--------------------+--------------------|
| 25 9 4 | 58 6 7 | 1 235 358 |
| 1 7 3 | 2 9 58 | 4 6 58 |
| 6 25 8 | 1 4 3 | 9 257 57 |
*--------------------------------------------------------------*
This is followed immediately by a W Wing : (8=3) r1c5 - r2c4 = r2c7 - (3=8) (the cells marked a-b-c-d in the diagram) which removes the 8 from r1c8 (the W Wing shows that at least one of cells a or d must be 8, so r1c8 can't be 8).
The puzzle solves in singles from there. If you are unfamiliar with W Wings you can find them described
here.
The third puzzle takes 3 non-basic moves :
- Code: Select all
*--------------------------------------------------------------*
| 4 27 56 | 8 9 3 | 1 25 67-2 |
| 78 9 56 | 1 2 4 | 578 3 678 |
|*28 1 3 | 6 57 57 | 9 4 *28 |
|--------------------+--------------------+--------------------|
| 9 5 28 | 34 34 28 | 6 7 1 |
| 6 3 278 | 79 1 2789 | 4 28 5 |
| 1 4 278 | 57 6 2578 | 28 9 3 |
|--------------------+--------------------+--------------------|
|*257 8 4 | 579 57 6 | 3 1 *279 |
| 357-2 27 1 | 34 8 579 | 257 6 479-2 |
| 357 6 9 | 2 34 1 | 578 58 478 |
*--------------------------------------------------------------*
The is an X Wing in 2's r37 c19 (cells marked *) which removes the 2's from r1c9, r8c1 and r8c9.
- Code: Select all
*--------------------------------------------------------------*
| 4 27 56 | 8 9 3 | 1 25 a67 |
|c78 9 56 | 1 2 4 | 58-7 3 b678 |
| 28 1 3 | 6 57 57 | 9 4 28 |
|--------------------+--------------------+--------------------|
| 9 5 28 | 34 34 28 | 6 7 1 |
| 6 3 278 | 79 1 2789 | 4 28 5 |
| 1 4 278 | 57 6 2578 | 28 9 3 |
|--------------------+--------------------+--------------------|
| 257 8 4 | 579 57 6 | 3 1 279 |
| 357 27 1 | 34 8 579 | 257 6 479 |
| 357 6 9 | 2 34 1 | 578 58 478 |
*--------------------------------------------------------------*
The next move is called an XYZ wing. The logic is, that if all the 7's in cells a, b and c were false, cell b would be empty, so one of cells a, b and c must be 7.
Since r2c7 can see all three of these cells, it can't be 7. You can find a description of XYZ Wings
here.
- Code: Select all
*--------------------------------------------------------------*
| 4 27 56 | 8 9 3 | 1 2-5 67 |
| 78 9 56 | 1 2 4 |a58 3 67 |
| 28 1 3 | 6 57 57 | 9 4 b28 |
|--------------------+--------------------+--------------------|
| 9 5 28 | 34 34 28 | 6 7 1 |
| 6 3 278 | 79 1 2789 | 4 28 5 |
| 1 4 278 | 57 6 2578 | 28 9 3 |
|--------------------+--------------------+--------------------|
| 257 8 4 | 579 57 6 | 3 1 29 |
| 357 27 1 | 34 8 579 | 27-5 6 49 |
| 357 6 9 | 2 34 1 | 78-5 d58 c48 |
*--------------------------------------------------------------*
Following some more basics there is a W Wing (5=8) r2c7 - r3c9 = r9c9 - (8=5) r9c8 in cells a-b-c-d, which shows that at least one of cells a and d must be 5, so 5 can be removed from r1c8, r8c7 and r9c7.
The puzzle solves in singles from there. Let me know if you need any further explanation of all this.
Leren