Need help solving by hand

Post the puzzle or solving technique that's causing you trouble and someone will help

Need help solving by hand

Postby wcedge » Mon Mar 20, 2006 6:58 pm

x 8 x x x 5 1 7 x
x x 7 8 x 3 x 5 x
x x 5 7 x 9 x 3 8
x x x x 8 x x 2 4
x 6 x x 5 x x 9 x
2 3 x x 7 x x x 5
8 7 x 1 x x 5 4 x
x x x 4 x x 9 x x
x x 2 5 x x x 6 x

Thanks,

Charlie
wcedge
 
Posts: 1
Joined: 20 March 2006

Postby moggymidge » Mon Mar 20, 2006 7:21 pm

Hi Charlie,

Hope the following gets you started:-


The 6 in column 7 has to be either of the ones in box 6, otherwise there wouldn't be a 6 in the column, therefore exclude the 6's in column 7 rows 2 and 3.

In box 3 two cells contain a 2 and a 4 exclusively, exclude the 2's from other cells in box 3.

In box 2 the 2's have to be in row 1 otherwise that row would be without 2's, so exclude all other 2's in the box.


good luck - Moggy
moggymidge
 
Posts: 15
Joined: 18 February 2006

Postby ravel » Tue Mar 21, 2006 12:02 am

But (according to susser) i fear its getting worse then, you will need more advanced techniques (also an xy-wing does not solve it).
ravel
 
Posts: 998
Joined: 21 February 2006

Postby QBasicMac » Tue Mar 21, 2006 3:36 am

What do you mean "solve by hand"?

I hope you mean you have prepared a sheet like this:

Code: Select all
+------------------+-----------------+---------------+
| 3469  8     3469 | 26   246   5    | 1    7   269  |
| 1469  1249  7    | 8    1246  3    | 246  5   269  |
| 146   124   5    | 7    1246  9    | 246  3   8    |
+------------------+-----------------+---------------+
| 1579  159   19   | 369  8     16   | 367  2   4    |
| 147   6     148  | 23   5     124  | 378  9   137  |
| 2     3     1489 | 69   7     146  | 68   18  5    |
+------------------+-----------------+---------------+
| 8     7     369  | 1    2369  26   | 5    4   23   |
| 1356  15    136  | 4    236   2678 | 9    18  1237 |
| 1349  149   2    | 5    39    78   | 378  6   137  |
+------------------+-----------------+---------------+


That way you can start reducing candidates.

On your worksheet, you can follow moggymidges advice to erase the 6's in column 7, rows 2 and 3. Also the 2's in r12c9. Right? Finally, the 2's in box 2, giving

Code: Select all
+------------------+-----------------+---------------+
| 3469  8     3469 | 26   246   5    | 1    7   69   |
| 1469  1249  7    | 8    146   3    | 24   5   69   |
| 146   124   5    | 7    146   9    | 24   3   8    |
+------------------+-----------------+---------------+
| 1579  159   19   | 369  8     16   | 367  2   4    |
| 147   6     148  | 23   5     124  | 378  9   137  |
| 2     3     1489 | 69   7     146  | 68   18  5    |
+------------------+-----------------+---------------+
| 8     7     369  | 1    2369  26   | 5    4   23   |
| 1356  15    136  | 4    236   2678 | 9    18  1237 |
| 1349  149   2    | 5    39    78   | 378  6   137  |
+------------------+-----------------+---------------+


Is this the kind of work you want to do? Personally, I dislike pencilmarks and get very easy puzzles to solve so I can just stare at the puzzle and fill in squares. But your puzzle is tougher.

The only thing I can add is to point out that r89c6 have the only 78's in box 8, so the 26 can be removed from r8c6.

There may be other stuff, but I can't see it.

Mac
QBasicMac
 
Posts: 441
Joined: 13 July 2005

Need help solving by hand

Postby Cec » Tue Mar 21, 2006 5:38 am

Hi Charlie,
To find out more about posting to the forum including how to post a grid, how cells are defined and other suggested terminology then click on --> Here
QBasicMac wrote:".. I dislike pencilmarks .."

I know what you mean Mac. However I notice in the "Sticky" thread that posting "pencilmarks" is mentioned which could be confusing because this is what you have posted though I would prefer it were called a "candidate" grid.
Cec
Cec
 
Posts: 1039
Joined: 16 June 2005

Postby moggymidge » Tue Mar 21, 2006 7:43 am

QBasicMac wrote
What do you mean "solve by hand"?


I presume that Charlie means he's one of us who prefer the book/pencil/paper approach to solving rather than using a Sudoku software package of some description.

Each to his own - if you want to dig deep and analyse each puzzle to within an inch of it's life then fair enough - and believe me some of the advanced solving methods that can be applied easily to pencil and paper have been a god send and I applaud those contributors on this forum who have the brain power work out and come up with such things:!:

But some of us are 'old school' and there can't be anything more satisfying (sudoku wise) than completing a 'hard' or a 'fiendish' puzzle in a book/newspaper using only a pencil and eraser with pencil marks (candidates) scribbled all over the place.

I really do believe that the best puzzles are 'solved by hand' even if it does soemtimes take days. Anyway, I know this thread 'man v machine etc. etc.' has already been discussed elsewhere so I'll stop now.

Moggy
Last edited by moggymidge on Tue Mar 21, 2006 10:17 am, edited 1 time in total.
moggymidge
 
Posts: 15
Joined: 18 February 2006

Postby Carcul » Tue Mar 21, 2006 11:10 am

Code: Select all
 *-----------------------------------------------------------*
 | 3469  8     3469  | 26    246   5     | 1     7     69    |
 | 1469  1249  7     | 8     146   3     | 24    5     69    |
 | 146   124   5     | 7     146   9     | 24    3     8     |
 |-------------------+-------------------+-------------------|
 | 1579  159   19    | 369   8     16    | 367   2     4     |
 | 147   6     148   | 23    5     124   | 378   9     137   |
 | 2     3     1489  | 69    7     146   | 68    18    5     |
 |-------------------+-------------------+-------------------|
 | 8     7     369   | 1     2369  26    | 5     4     23    |
 | 1356  15    136   | 4     236   78    | 9     18    1237  |
 | 1349  149   2     | 5     39    78    | 378   6     137   |
 *-----------------------------------------------------------*

[r1c4]{(-6-[r2c5|r3c5])(-6-[r1c1|r1c3])-6-[r1c9]-9-[r1c1|r1c3]-4-[r2c2|r3c2]=(Almost Unique Pattern: r2c257/r3c257)=4|9=[r2c2]=2=[r3c2]=1=[r2c1|r3c1]-1-[r5c1]}=2=[r5c4](=3=[r4c4]-3-[r4c7])-2-[r5c6]=2=[r7c6]-2-[r7c9](-3-[r5c9|r9c9])-3-[r9c6|r9c7]-7-[r9c9]-1-[r5c9](-7-[r5c1])-7-[r4c7]-6-[r4c6]-1-[r5c6]-4-[r5c1]

which means that, if r1c4=6 then r5c1 would be an empty cell - a contradiction. So, r1c4 cannot be "6" and that solve the puzzle.

Carcul
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby ronk » Tue Mar 21, 2006 11:49 am

Carcul wrote:[r1c4]{(-6-[r2c5|r3c5])(-6-[r1c1|r1c3])-6-[r1c9]-9-[r1c1|r1c3]-4-[r2c2|r3c2]=(Almost Unique Pattern: r2c257/r3c257)=4|9=[r2c2]=2=[r3c2]=1=[r2c1|r3c1]-1-[r5c1]}=2=[r5c4](=3=[r4c4]-3-[r4c7])-2-[r5c6]=2=[r7c6]-2-[r7c9](-3-[r5c9|r9c9])-3-[r9c6|r9c7]-7-[r9c9]-1-[r5c9](-7-[r5c1])-7-[r4c7]-6-[r4c6]-1-[r5c6]-4-[r5c1]

which means that, if r1c4=6 then r5c1 would be an empty cell - a contradiction. So, r1c4 cannot be "6" and that solve the puzzle.

Yikes! I don't mean to burst your balloon, but how is that an appropriate response to a first time poster?
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby Neunmalneun » Tue Mar 21, 2006 1:05 pm

Next step could be this one: There is an AUR (24) in R23C27. R23C2 must contain a "2", so either of the cells can't be "4". Eliniaiton of 4 in R23C2 leaving a single 4 in R9C2.
Neunmalneun
 
Posts: 52
Joined: 22 December 2005

Postby Carcul » Tue Mar 21, 2006 1:56 pm

Hi Ronk.

Thanks for sharing your opinion. Here is a simpler solution:

1. [r6c4]=9=[r4c4]=3=[r4c7]=6=[r6c7]-6-[r6c4], => r6c4<>6.

2. [r6c6]=4=[r5c6]=2=[r7c6]-2-[r7c9](-3-[r9c9])-3-[r9c6|r9c7]-7-[r9c9]-1-[r8c8]=1=[r6c8]-1-[r6c6], => r6c6<>1.

3. [r5c9]-1-[r5c6]=1=[r4c6](-1-[r4c2])-1-[r4c3]-9-[r4c2]-5-[r8c2]-1-[r8c8]=1=[r6c8]-1-[r5c9], => r5c9<>1.

4. [r5c9]=7=[r9c9]-7-[r9c7]-3-[r7c9]-2-[r7c6]=2=[r5c6]-2-[r5c4]-3-[r5c9], r5c9<>3 and that solve the puzzle.

Regards, Carcul
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby ronk » Tue Mar 21, 2006 3:28 pm

Carcul wrote:Here is a simpler solution:

Thanks, that's much easier to understand IMO. Personally, I think expressing the multiple inferences as almost-locked-sets might help a little too. For example ...

[r6c6]=4=[r5c6]=2=[r7c6]-2-[r7c9](-3-[r9c9])-3-[r9c6|r9c7]-7-[r9c9]-1-[r8c8]=1=[r6c8]-1-[r6c6], => r6c6<>1

... could be written ...

r6c6=4=r5c6=2=r7c6-2-r7c9-3-(ALS:r9c679=3|1=r9c9)-1-r8c8=1=r6c8-1-r6c6, => r6c6<>1.

P.S. I stripped the square brackets, as I've never seen them as useful.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby ravel » Tue Mar 21, 2006 4:26 pm

After Neunmalneun's UR (type 4) you have:
Code: Select all
 *-----------------------------------------------------------*
 | 3469  8     3469  | 26    246   5     | 1     7     69    |
 | 1469  129   7     | 8     146   3     | 24    5     69    |
 | 146   12    5     | 7     146   9     | 24    3     8     |
 |-------------------+-------------------+-------------------|
 | 1579  159   19    | 369   8     16    | 367   2     4     |
 | 147   6     148   | 23    5     124   | 378   9     137   |
 | 2     3     1489  | 69    7     146   | 68    18    5     |
 |-------------------+-------------------+-------------------|
 | 8     7     369   | 1     2369  26    | 5     4     23    |
 | 1356  15    136   | 4     236   78    | 9     18    1237  |
 | 139   4     2     | 5     39    78    | 378   6     137   |
 *-----------------------------------------------------------*

The next easy step is an xy-wing (from r4c6=16 either r4c3 or r6c4 is 9)
r6c3=9 => r4c3=1 => r4c6=6 => r6c4=9, so r6c4=9

Then the following chain solves the puzzle:
r9c9=1 (=> r9c1<>3) => r8c3=9 (=> r8c5<>9 => r9c5=9 => r9c5<>3)
=> r4c3=1 => r4c6=6 => r7c6=2 => r7c9=3 => r9c79<>3
Because there is no 3 left for row 9 then, r9c9=1.

A nice loop notation:
r9c9-1-r8c3(-9-r8c5=9=r9c5)-9-r4c3-1-r4c6-6-r7c6-2-r7c9-3-r9c79
ravel
 
Posts: 998
Joined: 21 February 2006


Return to Help with puzzles and solving techniques