This puzzle is
#2 of the controlled-bias collection (I just tweaked the floors). Its SER is 8.1 and its W rating is 5.
The unbiased means for minimal puzzles are:
- 4.73 for SER, with standard deviation 2.49
- 2.45 for W, with standard deviation 1.39
This means that this puzzle is:
- 1.35 standard deviations above the mean for SER
- 1.83 standard deviations above the mean for W
i.e. it is a relatively hard puzzle in unbiased stats.
But, of course, it is still extremely far from the hardest known puzzles. In particular, it is in T&E(1), so that no embedded chains, nets or OR branchings are needed.
Apart from this, it has absolutely nothing noticeable: it was just the first non trivial puzzle to appear in the collection.
Random puzzles have nothing noticeable.Starting after the first obvious steps:
- Code: Select all
(solve-sukaku-grid
+------------------------+-------------------+-----------------+
! 3458 34678 2 ! 9 34578 3458 ! 3468 48 1 !
! 13458 34678 156748 ! 378 34578 3458 ! 3468 9 2 !
! 9 348 48 ! 2 6 1 ! 348 7 5 !
+------------------------+-------------------+-----------------+
! 128 2689 3 ! 4 158 568 ! 7 58 69 !
! 48 5 648 ! 3678 378 9 ! 1 2 36 !
! 7 689 1698 ! 1368 2 3568 ! 48 458 369 !
+------------------------+-------------------+-----------------+
! 234 1 49 ! 5 34 7 ! 29 6 8 !
! 6 2348 485 ! 38 9 2348 ! 25 1 7 !
! 258 2789 5798 ! 168 18 268 ! 592 3 4 !
+------------------------+-------------------+-----------------+
)
,
here is one of the possible SudoRules solutions, where simplicity of each step is always preferred:
- Code: Select all
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin
*** Using CLIPS 6.32-r770
***********************************************************************************************
164 candidates, 907 csp-links and 907 links. Density = 6.79%
biv-chain[3]: r8c4{n3 n8} - r9c5{n8 n1} - b5n1{r4c5 r6c4} ==> r6c4 ≠ 3
biv-chain[4]: r7c7{n2 n9} - r7c3{n9 n4} - b8n4{r7c5 r8c6} - b8n2{r8c6 r9c6} ==> r9c7 ≠ 2
biv-chain[4]: r9c5{n8 n1} - b5n1{r4c5 r6c4} - c3n1{r6 r2} - c3n7{r2 r9} ==> r9c3 ≠ 8
whip-bn[4]: b8n4{r7c5 r8c6} - b8n2{r8c6 r9c6} - b7n2{r9c2 r8c2} - b7n3{r8c2 .} ==> r7c1 ≠ 4
biv-chain[5]: r4n2{c2 c1} - b4n1{r4c1 r6c3} - c4n1{r6 r9} - b8n6{r9c4 r9c6} - b8n2{r9c6 r8c6} ==> r8c2 ≠ 2
biv-chain-rn[3]: r8n2{c6 c7} - r7n2{c7 c1} - r7n3{c1 c5} ==> r8c6 ≠ 3
biv-chain[4]: r8n2{c6 c7} - r7n2{c7 c1} - r7n3{c1 c5} - b8n4{r7c5 r8c6} ==> r8c6 ≠ 8
t-whip[4]: b7n4{r8c3 r8c2} - r8n3{c2 c4} - r8n8{c4 c3} - r3c3{n8 .} ==> r5c3 ≠ 4
hidden-single-in-a-block ==> r5c1 = 4
t-whip[4]: c2n4{r3 r8} - r8n3{c2 c4} - r8n8{c4 c3} - r3c3{n8 .} ==> r2c3 ≠ 4
t-whip[4]: r3c3{n8 n4} - c2n4{r3 r8} - r8n3{c2 c4} - r8n8{c4 .} ==> r5c3 ≠ 8, r6c3 ≠ 8, r2c3 ≠ 8
singles ==> r5c3 = 6, r5c9 = 3, r6c6 = 3, r6c8 = 5, r4c8 = 8, r1c8 = 4, r6c7 = 4, r6c2 = 8, r2c2 ≠ 4
naked-pairs-in-a-column: c2{r3 r8}{n3 n4} ==> r2c2 ≠ 3, r1c2 ≠ 3
naked-pairs-in-a-block: b1{r1c2 r2c2}{n6 n7} ==> r2c3 ≠ 7
hidden-single-in-a-column ==> r9c3 = 7
hidden-pairs-in-a-block: b7{r8c3 r9c1}{n5 n8} ==> r9c1 ≠ 2, r8c3 ≠ 4
hidden-pairs-in-a-column: c4{n1 n6}{r6 r9} ==> r9c4 ≠ 8
finned-x-wing-in-columns: n3{c4 c2}{r8 r2} ==> r2c1 ≠ 3
biv-chain[3]: r4c5{n5 n1} - r6n1{c4 c3} - r2c3{n1 n5} ==> r2c5 ≠ 5
biv-chain[3]: r2n1{c1 c3} - c3n5{r2 r8} - c3n8{r8 r3} ==> r2c1 ≠ 8
naked-pairs-in-a-block: b1{r2c1 r2c3}{n1 n5} ==> r1c1 ≠ 5
whip[1]: r1n5{c6 .} ==> r2c6 ≠ 5
finned-x-wing-in-columns: n8{c1 c6}{r9 r1} ==> r1c5 ≠ 8
biv-chain[4]: r9c5{n8 n1} - r4n1{c5 c1} - c1n2{r4 r7} - r9n2{c2 c6} ==> r9c6 ≠ 8
whip[1]: c6n8{r2 .} ==> r2c4 ≠ 8, r2c5 ≠ 8
biv-chain[3]: r2c4{n7 n3} - b8n3{r8c4 r7c5} - c5n4{r7 r2} ==> r2c5 ≠ 7
naked-pairs-in-a-column: c5{r2 r7}{n3 n4} ==> r1c5 ≠ 3
whip[1]: b2n3{r2c5 .} ==> r2c7 ≠ 3
biv-chain-rn[4]: r7n4{c3 c5} - r2n4{c5 c6} - r2n8{c6 c7} - r3n8{c7 c3} ==> r3c3 ≠ 4
stte