Well, here's my analysis of the situation. I also was able to remove only 10 candidates, which suggests that advanced coloring does supercede forcing chains.
[edit]
When I updated my solver to try to run this it found an exclusion I originally didn't, so the end result was the elimination of 16 candidates.
It's also clear that double-implication chains aren't what I thought they were, since the forcing chains I'm familiar with are the ones found by Trebor's susser. If you have any links explaining how to use double implication chains I'd like to see them. Anyway, what follows is my set of deductions, at length:
- Code: Select all
56 56 . | 38 . 348 | . 348 .
aA Aa | bB c | C
179 . . | . 2457 12 | 245 59 259
def | C E Dd | c gG
. 179 17 | 123578 2578 1238 | 2568 35689 235689
F hH | i | j
--------------------------------------------------------------------------
12367 12678 1347 | 39 2678 . | 2468 16789 12689
c | kK | C
2567 245678 . | 278 . 268 | . 45678 2568
C | I l | c
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| Kk |
--------------------------------------------------------------------------
123579 12579 1357 | 12589 2568 12689 | 68 368 .
F | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN C | c o | JO
. 249 . | 29 . 249 | . 15 15
c | pP C | qQ Qq
Exclusions:
A!N; b!k; c!o; C!E; d!e; d!f; d!h; e!f; e!H; E!i; f!G; g!Q; H!i; J!O; K!P; L!m; L!o; m!O
2nd round:
A!N; b!k,P; c!J,m,o; C!d,E,f,H; d!C,e,f,h,i; e!d,f,H; E!C,i,o; f!C,d,e,G,i,Q; g!Q; G!f; h!d; H!C,e,i; i!d,E,f,H; J!c,L,O; k!b; K!P; L!J,m,o; N!A; m!L,O; o!c,E,L; O!J,m; P!b,K; Q!f,g
3rd round:
A!N; b!k,P; c!J,m,o; C!d,E,f,H; d!C,e,f,h,i,J,m,o; e!d,f,H; E!C,i,J,m,o; f!C,d,e,G,i,J,m,o,Q; g!Q; G!f; h!d; H!C,e,i,J,m,o; i!d,E,f,H; J!c,d,E,f,H,L,O; k!b; K!P; L!J,m,o; m!c,E,L,O; N!A; o!c,d,E,f,H,L; O!J,m; P!b,K; Q!f,g
4th round:
A!N; b!k,P; c!J,m,o; C!d,E,f,H; d!C,e,f,h,i,J,m,o; e!d,f,H; E!C,i,J,m,o; f!C,d,e,G,i,J,m,o,Q; g!Q; G!f; h!d; H!C,e,i,J,m,o; i!d,E,f,H; J!c,d,E,f,H,L,O; k!b; K!P; L!J,m,o; m!c,d,E,f,H,L,O; N!A; o!c,d,E,f,H,L; O!J,m; P!b,K; Q!f,g
No contradictions found
c!J, so C or j is true. C and j intersect at (8,1)=3, so (8,1)<>3.
A new pointing pair is discovered in box 3, row 3, so (4,3)<>3 and (6,3)<>3.
- Code: Select all
56 56 . | 38 . 348 | . 48 .
aA Aa | bB Bc | Cc
179 . . | . 2457 12 | 245 59 259
def | C E Dd | c gG
. 179 17 | 12578 2578 128 | 2568 35689 235689
F hH | i | J j
--------------------------------------------------------------------------
12367 12678 1347 | 39 2678 . | 2468 16789 12689
c | kK | C
2567 245678 . | 278 . 268 | . 45678 2568
C | I l | c
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| Kk |
--------------------------------------------------------------------------
123579 12579 1357 | 12589 2568 12689 | 68 368 .
F | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN C | c o | JO
. 249 . | 29 . 249 | . 15 15
c | pP C | qQ Qq
b and k are conjugates, and B and K are conjugates, so bB=Kk
- Code: Select all
56 56 . | 38 . 348 | . 48 .
aA Aa | bB Bc | Cc
179 . . | . 2457 12 | 245 59 259
def | C E Dd | c gG
. 179 17 | 12578 2578 128 | 2568 35689 235689
F hH | i | J j
--------------------------------------------------------------------------
12367 12678 1347 | 39 2678 . | 2468 16789 12689
c | Bb | C
2567 245678 . | 278 . 268 | . 45678 2568
C | I l | c
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
123579 12579 1357 | 12589 2568 12689 | 68 368 .
F | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN C | c o | JO
. 249 . | 29 . 249 | . 15 15
c | pP C | qQ Qq
New exclusion: B!c
A!N; b!P; B!c; c!B,J,m,o; C!d,E,f,H; d!C,e,f,h,i,J,m,o; e!d,f,H; E!C,i,J,m,o; f!C,d,e,G,i,J,m,o,Q; g!Q; G!f; h!d; H!C,e,i,J,m,o; i!d,E,f,H; J!c,d,E,f,H,L,O; L!J,m,o; m!c,d,E,f,H,L,O; N!A; o!c,d,E,f,H,L; O!J,m; P!b; Q!f,g
2nd round:
A!N; b!P; B!c,d,E,f,H; c!B,J,m,o,P; C!d,E,f,H; d!B,C,e,f,h,i,J,m,o; e!d,f,H; E!B,C,i,J,m,o; f!B,C,d,e,G,i,J,m,o,Q; g!Q; G!f; h!d; H!B,C,e,i,J,m,o; i!d,E,f,H; J!c,d,E,f,H,L,O; L!J,m,o; m!c,d,E,f,H,L,O; N!A; o!c,d,E,f,H,L; O!J,m; P!b,c; Q!f,g;
3rd round:
A!N; b!P; B!c,d,E,f,H; c!B,J,m,o,P; C!d,E,f,H; d!B,C,e,f,h,i,J,m,o,P; e!d,f,H; E!B,C,i,J,m,o,P; f!B,C,d,e,G,i,J,m,o,P,Q; g!Q; G!f; h!d; H!B,C,e,i,J,m,o,P; i!d,E,f,H; J!c,d,E,f,H,L,O; L!J,m,o; m!c,d,E,f,H,L,O; N!A; o!c,d,E,f,H,L; O!J,m; P!b,c,d,E,f,H; Q!f,g
No contradictions found
c!m, so C or M must be true. C and M intersect at (7,4)=8, so (7,4)<>8.
c!P, so C or p must be true. C and p intersect at (6,9)=2, so (6,9)<>2.
- Code: Select all
56 56 . | 38 . 348 | . 48 .
aA Aa | bB Bc | Cc
179 . . | . 2457 12 | 245 59 259
def | C E Dd | c gG
. 179 17 | 12578 2578 128 | 2568 35689 235689
F hH | i | J j
--------------------------------------------------------------------------
12367 12678 1347 | 39 2678 . | 246 16789 12689
c | Bb | C
2567 245678 . | 278 . 268 | . 45678 2568
C | I l | c
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
123579 12579 1357 | 12589 2568 12689 | 68 368 .
F | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN C | c o | JO
. 249 . | 29 . 49 | . 15 15
Pc | pP Cc | qQ Qq
C!H, so c or h must be true. c and h intersect at (3,4)=1, so (3,4)<>1.
E!i, so e or I must be true. e and I intersect at (1,5)=7, so (1,5)<>7.
f!J, so F or j must be true. F and j intersect at (9,3)=9, so (9,3)<>9.
- Code: Select all
56 56 . | 38 . 348 | . 48 .
aA Aa | bB Bc | Cc
179 . . | . 2457 12 | 245 59 259
def | C E Dd | c gG
. 179 17 | 12578 2578 128 | 2568 35689 23568
F hH | i | J f j
--------------------------------------------------------------------------
12367 12678 347 | 39 2678 . | 246 16789 12689
c | Bb | C
256 245678 . | 278 . 268 | . 45678 2568
C | I l | c
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
123579 12579 1357 | 12589 2568 12689 | 68 368 .
F | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN C | c o | JO
. 249 . | 29 . 49 | . 15 15
Pc | pP Cc | qQ Qq
L!o, so l or O must be true. l and O intersect at (9,5)=6, so (9,5)<>6.
f!J, so F or j must be true. F and j intersect at (1,7)=3, so (1,7)<>3.
- Code: Select all
56 56 . | 38 . 348 | . 48 .
aA Aa | bB Bc | Cc
179 . . | . 2457 12 | 245 59 259
def | C E Dd | c gG
. 179 17 | 12578 2578 128 | 2568 35689 23568
F hH | i | J f j
--------------------------------------------------------------------------
12367 12678 347 | 39 2678 . | 246 16789 12689
c | Bb | C
256 245678 . | 278 . 268 | . 45678 258
C | I l | c
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
12579 12579 1357 | 12589 2568 12689 | 68 368 .
F J | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN C | c o | JO
. 249 . | 29 . 49 | . 15 15
Pc | pP Cc | qQ Qq
This is where I initially stopped when I first posted this. However my solver told me there was more. Sure enough I looked, and it's there.
C!f, so c or F must be true. c and F intersect at (2,9)=9, so (2,9)<>9.
A new pointing pair is discovered in box 8, row 9, so (4,7)<>9 and (6,7)<>9.
- Code: Select all
56 56 . | 38 . 348 | . 48 .
aA Aa | bB Bc | Cc
179 . . | . 2457 12 | 245 59 259
def | C E Dd | c gG
. 179 17 | 12578 2578 128 | 2568 35689 23568
F hH | i | J f j
--------------------------------------------------------------------------
12367 12678 347 | 39 2678 . | 246 16789 12689
c | Bb | C
256 245678 . | 278 . 268 | . 45678 258
C | I l | c
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
12579 12579 1357 | 12589 2568 12689 | 68 368 .
F J | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN C | c o | JO
. 24 . | 29 . 49 | . 15 15
Pc | pP Cc | qQ Qq
c and P are conjugates in (2,9), so cC=pP.
b and C are conjugates in column 4, digit 9, so bB=cC.
Exclusions are now:
A!N; b!J,m,o; B!d,E,f,H; d!B,e,f,h,i,J,m,o; e!d,f,H; E!B,i,J,m,o; f!B,d,e,G,i,J,m,o,Q; g!Q; G!f; h!d; H!B,e,i,J,m,o; i!d,E,f,H; J!b,d,E,f,H,L,O; L!J,m,o; m!b,d,E,f,H,L,O; N!A; o!b,d,E,f,H,L; O!J,m; Q!f,g
- Code: Select all
56 56 . | 38 . 348 | . 48 .
aA Aa | bB Bb | Bb
179 . . | . 2457 12 | 245 59 259
def | B E Dd | b gG
. 179 17 | 12578 2578 128 | 2568 35689 23568
F hH | i | J f j
--------------------------------------------------------------------------
12367 12678 347 | 39 2678 . | 246 16789 12689
b | Bb | B
256 245678 . | 278 . 268 | . 45678 258
B | I l | b
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
12579 12579 1357 | 1258 2568 1268 | 68 368 .
F J | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN B | b o | JO
. 24 . | 29 . 49 | . 15 15
Bb | bB Bb | qQ Qq
Conjugates b and B intersect at (6,1)=8, so (6,1)<>8.
Conjugates b and B intersect at (3,4)=3, so (3,4)<>3.
- Code: Select all
56 56 . | 38 . 34 | . 48 .
aA Aa | bB Bb | Bb
179 . . | . 2457 12 | 245 59 259
def | B E Dd | b gG
. 179 17 | 12578 2578 128 | 2568 35689 23568
F hH | i | J f j
--------------------------------------------------------------------------
12367 12678 47 | 39 2678 . | 246 16789 12689
b bB | Bb | B
256 245678 . | 278 . 268 | . 45678 258
B | I l | b
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
12579 12579 1357 | 1258 2568 1268 | 68 368 .
F J | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN B | b o | JO
. 24 . | 29 . 49 | . 15 15
Bb | bB Bb | qQ Qq
b!m, so B or M must be true. B and M intersect at (4,7)=8, so (4,7)<>8.
Conjugates b and B intersect at (1,4)=7, so (1,4)<>7.
- Code: Select all
56 56 . | 38 . 34 | . 48 .
aA Aa | bB Bb | Bb
179 . . | . 2457 12 | 245 59 259
def | B E Dd | b gG
. 179 17 | 12578 2578 128 | 2568 35689 23568
F hH | i | J f j
--------------------------------------------------------------------------
1236 12678 47 | 39 2678 . | 246 16789 12689
b bB | Bb | B
256 245678 . | 278 . 268 | . 45678 258
B | I l | b
123567 125678 1357 | . 2678 39 | 2568 156789 125689
| bB |
--------------------------------------------------------------------------
12579 12579 1357 | 125 2568 1268 | 68 368 .
F J | L | mM j
135 15 1345 | 158 4568 . | . . 368
nN B | b o | JO
. 24 . | 29 . 49 | . 15 15
Bb | bB Bb | qQ Qq
That's the absolute limit of advanced coloring. As implemented originally in my program it didn't find those because this is using the intersection of conjugates of mutually exclusive colors. It's far more common for advanced coloring to find a color contradicting itself. However in a puzzle like this one that has so many candidates left, it's amazing it could find anything at all.
One thing of note: Note the spots where 7 is eliminated from (1,5) and 6 from (9,5). Simple coloring will actually find these if you use the exclusion rule.
16 candidates vs. 10 is a definite sign that this beats the tar out of forcing chains of any kind.