multi steps but still human solvable?

Post puzzles for others to solve here.

multi steps but still human solvable?

Postby urhegyi » Sat Apr 17, 2021 8:41 am

Is the puzzle I just created a computer exercise or can anyone find a human logical solvepath?
Image
Code: Select all
.....6....3..2...7..24...5..7..1....5......4...6.3...2.1...9..5..4.72..19..3..8..

Update: Created by adding randomly clues and checking each step with HoDoKu I came to 26 clues and a relatively easy puzzle.
After removing 2 clues to minimalize it became extremely hard.
urhegyi
 
Posts: 756
Joined: 13 April 2020

Re: multi steps but still human solvable?

Postby denis_berthier » Mon Apr 19, 2021 4:34 am

.
SER = 8.5. I think few people would consider this as human solvable.

It has nothing remarkable (at least, not that I have seen); it is a typical randomly generated puzzle of SER 8.5. In terms of chains, it is in W6, Z8 or tW8, which means it requires relatively long chains to be solved.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: multi steps but still human solvable?

Postby urhegyi » Mon Apr 19, 2021 7:33 am

YZF_sudoku finds an UR forcing chain as hardest step. This is also new to me and appreciate any help to make this understand.
urhegyi
 
Posts: 756
Joined: 13 April 2020

Re: multi steps but still human solvable?

Postby yzfwsf » Mon Apr 19, 2021 7:46 am

urhegyi wrote:YZF_sudoku finds an UR forcing chain as hardest step. This is also new to me and appreciate any help to make this understand.

The UR forcing chain is to find a single chain for each guardian of UR, and the number of common deletions of these single chains is the effective eleminations of this technique. You can press the shortcut key F4 to switch and observe each single chain. You can also directly click on a specific line in the detailed prompt window to observe the corresponding single chain.
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: multi steps but still human solvable?

Postby urhegyi » Mon Apr 19, 2021 5:09 pm

Last example was to hard.
New try:
Image
Code: Select all
1.......6.2..3..5....1.4.....42....1.7..5..8.8..4.6..9..9....7..3......5...8..4..
urhegyi
 
Posts: 756
Joined: 13 April 2020

Re: multi steps but still human solvable?

Postby urhegyi » Mon Apr 19, 2021 6:07 pm

And a little change at the center has no influence on 2 of the horizontal bands...
Image
Code: Select all
........6.2.....5.3..1.4.....43....1.7..5..8.8..4.6..9..9....7............18.34..
urhegyi
 
Posts: 756
Joined: 13 April 2020

Re: multi steps but still human solvable?

Postby jco » Wed Apr 21, 2021 4:52 pm

Hello,

Only now I finished solving the second puzzle (done in parts due to time constraints).
I found a solution in 7 steps (had fun with step 6).
There must be a shorter way, perhaps using that UR earlier (step 4).
To avoid long lines, el. and pl. denote elimination and placement, respectively.

After basics

Code: Select all
.--------------------------------------------------------------.
| 1      f89    37    | 57    278   2578  |  2389   4     6    |
| 4       2     67    | 679   3     789   |  1      5     78   |
|e35679  f5689  3567  | 1     2678  4     |  2389  d239   2378 |
|---------------------+-------------------+--------------------|
| 3569    56-9  4     | 2    a789   3789  |  57     36    1    |
| 2369    7     1236  | 39    5     139   |  236    8     4    |
| 8       15    23    | 4     17    6     |  57     23    9    |
|---------------------+-------------------+--------------------|
| 256     4     9     | 356   126   1235  |  2368   7     238  |
| 267     3     8     | 679   4     279   |  269    1     5    |
| 2567    156   12567 | 8    b2679  23579 |  4     c2369  23   |
'--------------------------------------------------------------'

1. (9)r4c5=r9c5-r9c8=r3c8-(9)r3c1=(9)r13c2 => -9 r4c2 (2 el. by LC and NT)


Code: Select all
.--------------------------------------------------------------.
| 1       89    37     | 57   278    2578  | 2389   4     6    |
| 4       2     67     | 679  3      789   | 1      5     78   |
| 35679   5689  3567   | 1    2678   4     | 2389   239   2378 |
|----------------------+-------------------+-------------------|
| 359-6  *569   4      | 2    789    3789  | 57    *36    1    |
| 2369    7     1236   | 39   5      139   | 236    8     4    |
| 8       15    23     | 4    17     6     | 57     23    9    |
|----------------------+-------------------+-------------------|
| 256     4     9      | 356  126    1235  | 2368   7     238  |
| 267     3     8      | 679  4      279   | 269    1     5    |
| 257-6  *156   1257-6 | 8    279-6  23579 | 4     *2369  23   |
'--------------------------------------------------------------'

2. X-Wing(6) c28 r49 => -6 r9c135, -6 r4c1


Code: Select all
.-------------------------------------------------------.
| 1     89  a37   | 57   278   2578  | 2389  4     6    |
| 4     2   a67   | 79-6 3     789   | 1     5     78   |
| 3567  89   3567 | 1   h2678  4     | 2389  239   2378 |
|-----------------+------------------+------------------|
| 359  d56   4    | 2    789   3789  |e57   d36    1    |
| 2369  7    1236 | 39   5     139   | 236   8     4    |
| 8     15  b23   | 4   f17    6     |f57   c23    9    |
|-----------------+------------------+------------------|
| 256   4    9    | 356 g126   1235  | 2368  7     238  |
| 267   3    8    | 679  4     279   | 269   1     5    |
| 257   156  1257 | 8    279   23579 | 4     2369  23   |
'-------------------------------------------------------'

3. (6=73)r12c3-r6c3=r6c8-(3=65)r4c28-r4c7=(5-71)r6c57=(1-6)r7c5=(6)r3c5 => -6 r2c4 (2 pl., 1 el. by LC)


Code: Select all
.------------------------------------------------------.
| 1     89  a37   | 57   278  2578  | 389   4     6    |
| 4     2    6    | 79   3    789   | 1     5     78   |
| 35-7  89   357  | 1    6    4     | 2389  239   2378 |
|-----------------+-----------------+------------------|
| 359   56   4    | 2    789  3789  | 57   d36    1    |
| 2369  7    123  | 39   5    139   | 236   8     4    |
| 8     15  b23   | 4    17   6     | 57   c23    9    |
|-----------------+-----------------+------------------|
| 256   4    9    | 356  12   1235  | 2368  7     238  |
|g267   3    8    | 679  4    279   | 269   1     5    |
|g257  f156 f125-7| 8    279  23579 | 4    e2369  23   |
'------------------------------------------------------'

4. (7=3)r1c3-r6c3=r6c8-(3=6)r4c8-r9c8=(6-17)r9c23=(7)r89c1 => -7 r3c1,r9c3


Code: Select all
.-----------------------------------------------------.
| 1     89  b7-3 | 57   278  2578  |a389   4     6    |
| 4     2    6   | 79   3    789   | 1     5     78   |
|j35    89  i357 | 1    6    4     | 289-3 29-3  278-3|
|----------------+-----------------+------------------|
| 359  e56   4   | 2    789  3789  | 57   e36    1    |
| 2369  7   g123 | 39   5    139   | 236   8     4    |
| 8    f15  c23  | 4    17   6     | 57   d23    9    |
|----------------+-----------------+------------------|
| 256   4    9   | 356  12   1235  | 2368  7     238  |
| 267   3    8   | 679  4    279   | 269   1     5    |
| 257   156 h125 | 8    279  23579 | 4     2369  23   |
'-----------------------------------------------------'

5. (3)r1c7=r1c3-r6c3=r6c8-(3=65)r4c28-(5=1)r6c2-r5c3=(1-5)r9c3=r3c3-(5=3)r3c1 => -3 r3c789,r1c3
(8 pl., 3 el. by LC)


Code: Select all
.-----------------------------------------------.
| 1     9    7   | 5    28   28    | 3   4   6  |
| 4     2    6   | 79   3    79    | 1   5   8  |
| 35    8    35  | 1    6    4     | 29  29  7  |
|----------------+-----------------+------------|
| 359   56   4   | 2    789  3789  | 57  36  1  |
| 2369  7    123 | 39   5    139   | 26  8   4  |
| 8     15   23  | 4    17   6     | 57  23  9  |
|----------------+-----------------+------------|
| 256   4    9   |b36   1-2  135-2 | 8   7  a23 |
| 267   3    8   |c679  4   d279   | 69  1   5  |
| 257   156  125 | 8    279  23579 | 4   69  23 |
'-----------------------------------------------'

6. UR(79) r29 c46 using internals

(2=3)r7c9-(3=6)r7c4-(6)r8c4==(2)r8c6 => -2 r7c56 (9 pl., 1 el. by LC)


Code: Select all
.-------------------------------------------.
| 1    9   7  | 5    28  28    | 3   4   6  |
| 4    2   6  | 79   3   79    | 1   5   8  |
| 3    8   5  | 1    6   4     | 29  29  7  |
|-------------+----------------+------------|
| 59   56  4  | 2    89  389   | 7   36  1  |
|c69   7   23 |b39   5   1     | 26  8   4  |
| 8    1   23 | 4    7   6     | 5   23  9  |
|-------------+----------------+------------|
| 25-6 4   9  |a36   1   35    | 8   7   23 |
| 267  3   8  | 679  4   279   | 69  1   5  |
| 257  56  1  | 8    29  23579 | 4   69  23 |
'-------------------------------------------'

7. XY-Wing (6=3)r7c4-(3=9)5c4-(9=6)r5c1 => -6 r7c1; ste

Regards,
jco
JCO
jco
 
Posts: 758
Joined: 09 June 2020

Re: multi steps but still human solvable?

Postby urhegyi » Thu Apr 29, 2021 4:59 pm

denis_berthier wrote:.
SER = 8.5. I think few people would consider this as human solvable.

It has nothing remarkable (at least, not that I have seen); it is a typical randomly generated puzzle of SER 8.5. In terms of chains, it is in W6, Z8 or tW8, which means it requires relatively long chains to be solved.

From time to time when generating sudoku's I find some examples like the one I posted before and another one:
SER = 8.9:
computer.png
computer.png (14.92 KiB) Viewed 446 times

I wonder if there are many human solvers interested in such puzzles.
Code: Select all
1....8..3..2.9.4...5.........7.4.....6..59.8....2..5....9...1...8..6..2.7....5..4
urhegyi
 
Posts: 756
Joined: 13 April 2020

Re: multi steps but still human solvable?

Postby denis_berthier » Thu Apr 29, 2021 6:03 pm

urhegyi wrote:SER = 8.9
I wonder if there are many human solvers interested in such puzzles.
Code: Select all
1....8..3..2.9.4...5.........7.4.....6..59.8....2..5....9...1...8..6..2.7....5..4

It is in W6 also.
Same remarks as for the previous puzzle: unless it has some hidden characteristic, it is typical of randomly generated puzzles.

The following resolution path can probably be shortened, but it will give you an idea of the rules involved in the solution.
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 1      479    46     ! 4567   27     8      ! 2679   5679   3      !
   ! 368    37     2      ! 13567  9      137    ! 4      1567   15678  !
   ! 34689  5      3468   ! 13467  1237   12347  ! 26789  1679   126789 !
   +----------------------+----------------------+----------------------+
   ! 5      1239   7      ! 8      4      136    ! 2369   1369   1269   !
   ! 234    6      134    ! 137    5      9      ! 237    8      127    !
   ! 389    139    138    ! 2      137    1367   ! 5      4      1679   !
   +----------------------+----------------------+----------------------+
   ! 2346   234    9      ! 347    2378   2347   ! 1      3567   5678   !
   ! 34     8      5      ! 13479  6      1347   ! 379    2      79     !
   ! 7      123    136    ! 39     238    5      ! 3689   369    4      !
   +----------------------+----------------------+----------------------+


Resolution path in W6: Show
finned-swordfish-in-rows: n2{r9 r1 r4}{c2 c5 c7} ==> r5c7 ≠ 2
biv-chain[3]: r8c1{n3 n4} - c2n4{r7 r1} - b1n9{r1c2 r3c1} ==> r3c1 ≠ 3
biv-chain[3]: r5n4{c1 c3} - r1c3{n4 n6} - b7n6{r9c3 r7c1} ==> r7c1 ≠ 4
biv-chain[4]: r1c3{n4 n6} - b7n6{r9c3 r7c1} - c1n2{r7 r5} - b4n4{r5c1 r5c3} ==> r3c3 ≠ 4
biv-chain[4]: r1c3{n6 n4} - b4n4{r5c3 r5c1} - c1n2{r5 r7} - b7n6{r7c1 r9c3} ==> r3c3 ≠ 6
biv-chain[3]: r2c2{n7 n3} - r3c3{n3 n8} - r2n8{c1 c9} ==> r2c9 ≠ 7
biv-chain[4]: c3n6{r1 r9} - b7n1{r9c3 r9c2} - r9n2{c2 c5} - r1n2{c5 c7} ==> r1c7 ≠ 6
biv-chain[4]: r8c1{n3 n4} - b4n4{r5c1 r5c3} - r1c3{n4 n6} - b7n6{r9c3 r7c1} ==> r7c1 ≠ 3
biv-chain[4]: r5n4{c1 c3} - r1c3{n4 n6} - b7n6{r9c3 r7c1} - c1n2{r7 r5} ==> r5c1 ≠ 3
z-chain[4]: r5c7{n7 n3} - r8c7{n3 n9} - r8c9{n9 n7} - c8n7{r7 .} ==> r3c7 ≠ 7
z-chain[4]: r5c7{n7 n3} - r8c7{n3 n9} - r8c9{n9 n7} - c8n7{r7 .} ==> r1c7 ≠ 7
t-whip[4]: c6n4{r8 r3} - c6n2{r3 r7} - c1n2{r7 r5} - c1n4{r5 .} ==> r8c4 ≠ 4
z-chain[5]: r5n4{c3 c1} - r8n4{c1 c6} - r8n1{c6 c4} - r5c4{n1 n7} - r5c7{n7 .} ==> r5c3 ≠ 3
biv-chain[4]: r8c9{n9 n7} - c7n7{r8 r5} - r5n3{c7 c4} - r9c4{n3 n9} ==> r9c7 ≠ 9, r9c8 ≠ 9, r8c4 ≠ 9
hidden-single-in-a-block ==> r9c4 = 9
z-chain[5]: r8n9{c9 c7} - r1c7{n9 n2} - r1c5{n2 n7} - r6n7{c5 c6} - r6n6{c6 .} ==> r6c9 ≠ 9
whip[1]: r6n9{c2 .} ==> r4c2 ≠ 9
whip[5]: c4n5{r2 r1} - c4n6{r1 r3} - c4n4{r3 r7} - c2n4{r7 r1} - c2n7{r1 .} ==> r2c4 ≠ 7
z-chain[6]: r1c5{n7 n2} - r9n2{c5 c2} - r9n1{c2 c3} - r5c3{n1 n4} - b1n4{r1c3 r3c1} - b1n9{r3c1 .} ==> r1c2 ≠ 7
hidden-single-in-a-block ==> r2c2 = 7
biv-chain[4]: c5n1{r6 r3} - r2c6{n1 n3} - b1n3{r2c1 r3c3} - c3n8{r3 r6} ==> r6c3 ≠ 1
naked-pairs-in-a-column: c3{r3 r6}{n3 n8} ==> r9c3 ≠ 3
z-chain[4]: r2c6{n3 n1} - c5n1{r3 r6} - r6n7{c5 c9} - r6n6{c9 .} ==> r6c6 ≠ 3
z-chain[4]: r2n3{c6 c1} - r8c1{n3 n4} - c6n4{r8 r7} - c6n2{r7 .} ==> r3c6 ≠ 3
whip[4]: r8n1{c4 c6} - r2c6{n1 n3} - b5n3{r4c6 r6c5} - c1n3{r6 .} ==> r8c4 ≠ 3
biv-chain[3]: r8c4{n1 n7} - c7n7{r8 r5} - r5n3{c7 c4} ==> r5c4 ≠ 1
naked-pairs-in-a-row: r5{c4 c7}{n3 n7} ==> r5c9 ≠ 7
whip[5]: r2n3{c6 c1} - c3n3{r3 r6} - b5n3{r6c5 r4c6} - b6n3{r4c7 r5c7} - r8n3{c7 .} ==> r3c4 ≠ 3
z-chain[6]: r1c5{n7 n2} - r1c7{n2 n9} - r1c2{n9 n4} - b7n4{r7c2 r8c1} - c6n4{r8 r7} - c6n2{r7 .} ==> r3c6 ≠ 7
z-chain[6]: c6n7{r8 r6} - b6n7{r6c9 r5c7} - r8n7{c7 c9} - r8n9{c9 c7} - r1c7{n9 n2} - r1c5{n2 .} ==> r7c5 ≠ 7
z-chain[6]: b5n1{r6c6 r4c6} - c2n1{r4 r9} - r9n2{c2 c5} - r1c5{n2 n7} - r6n7{c5 c6} - r6n6{c6 .} ==> r6c9 ≠ 1
z-chain[4]: c7n8{r9 r3} - c7n6{r3 r4} - r6c9{n6 n7} - r5c7{n7 .} ==> r9c7 ≠ 3
t-whip[6]: r5c4{n3 n7} - c7n7{r5 r8} - c6n7{r8 r7} - c6n2{r7 r3} - c6n4{r3 r8} - r7c4{n4 .} ==> r2c4 ≠ 3
finned-swordfish-in-rows: n3{r8 r2 r5}{c7 c1 c6} ==> r4c6 ≠ 3
z-chain[4]: r2n3{c6 c1} - r8c1{n3 n4} - c6n4{r8 r3} - c6n2{r3 .} ==> r7c6 ≠ 3
t-whip[5]: r6n6{c9 c6} - r4c6{n6 n1} - b6n1{r4c8 r5c9} - c3n1{r5 r9} - b7n6{r9c3 .} ==> r7c9 ≠ 6
biv-chain[2]: r7n6{c8 c1} - c3n6{r9 r1} ==> r1c8 ≠ 6
whip[5]: c3n6{r1 r9} - c7n6{r9 r4} - r4c6{n6 n1} - r6n1{c5 c2} - r9n1{c2 .} ==> r3c1 ≠ 6
biv-chain[4]: r5n1{c9 c3} - r9c3{n1 n6} - c1n6{r7 r2} - r2n8{c1 c9} ==> r2c9 ≠ 1
t-whip[6]: r5n1{c9 c3} - r9c3{n1 n6} - c1n6{r7 r2} - r1n6{c3 c4} - c4n5{r1 r2} - r2c8{n5 .} ==> r4c8 ≠ 1, r3c9 ≠ 1
z-chain[4]: c9n1{r4 r5} - c9n2{r5 r3} - r1c7{n2 n9} - r8n9{c7 .} ==> r4c9 ≠ 9
t-whip[6]: r4c6{n6 n1} - b6n1{r4c9 r5c9} - b4n1{r5c3 r6c2} - c2n9{r6 r1} - r1c7{n9 n2} - c9n2{r3 .} ==> r4c9 ≠ 6
naked-pairs-in-a-block: b6{r4c9 r5c9}{n1 n2} ==> r4c7 ≠ 2
whip[1]: b6n2{r5c9 .} ==> r3c9 ≠ 2
t-whip[5]: r1c5{n7 n2} - r3n2{c6 c7} - c7n8{r3 r9} - c7n6{r9 r4} - r6c9{n6 .} ==> r6c5 ≠ 7
whip[1]: c5n7{r3 .} ==> r1c4 ≠ 7, r3c4 ≠ 7
hidden-pairs-in-a-row: r6{n6 n7}{c6 c9} ==> r6c6 ≠ 1
finned-x-wing-in-columns: n7{c7 c4}{r5 r8} ==> r8c6 ≠ 7
z-chain[5]: c7n8{r3 r9} - c7n6{r9 r4} - r6c9{n6 n7} - c6n7{r6 r7} - c6n2{r7 .} ==> r3c7 ≠ 2
hidden-single-in-a-block ==> r1c7 = 2
naked-single ==> r1c5 = 7
z-chain[4]: c8n7{r3 r7} - r7n5{c8 c9} - b9n8{r7c9 r9c7} - b9n6{r9c7 .} ==> r3c8 ≠ 6
t-whip[4]: r3n1{c6 c8} - c8n7{r3 r7} - b8n7{r7c4 r8c4} - r8n1{c4 .} ==> r2c6 ≠ 1
naked-single ==> r2c6 = 3
hidden-single-in-a-block ==> r3c3 = 3
naked-single ==> r6c3 = 8
biv-chain[3]: r6n1{c2 c5} - r3c5{n1 n2} - r9n2{c5 c2} ==> r9c2 ≠ 1
hidden-single-in-a-block ==> r9c3 = 1
naked-single ==> r5c3 = 4
naked-single ==> r1c3 = 6
naked-single ==> r2c1 = 8
naked-single ==> r5c1 = 2
naked-single ==> r5c9 = 1
naked-single ==> r4c9 = 2
naked-single ==> r7c1 = 6
biv-chain[3]: r3n7{c8 c9} - c9n8{r3 r7} - b9n5{r7c9 r7c8} ==> r7c8 ≠ 7
hidden-single-in-a-column ==> r3c8 = 7
hidden-single-in-a-block ==> r2c8 = 1
biv-chain[3]: c4n1{r3 r8} - r8c6{n1 n4} - c1n4{r8 r3} ==> r3c4 ≠ 4
x-wing-in-columns: n4{c2 c4}{r1 r7} ==> r7c6 ≠ 4
biv-chain[3]: b7n4{r7c2 r8c1} - r3n4{c1 c6} - c6n2{r3 r7} ==> r7c2 ≠ 2
hidden-single-in-a-block ==> r9c2 = 2
biv-chain[3]: c4n4{r7 r1} - r1n5{c4 c8} - r7c8{n5 n3} ==> r7c4 ≠ 3
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris


Return to Puzzles