This is a puzzle posted by David P. Bird. I'm attempting to make sense of the (possible ?) multi-fish present in this puzzle.
- Code: Select all
(Example 1) MS-NS: r35679c1678 (20 cells)
+--------------------------------------------------------------------------------+
| 1 24579 2379 | 246 245 24567 | 3467 8 369 |
| 34578 4578 378 | 1468 1458 9 | 2 3467 136 |
| 4789 24789 6 | 1248 3 1247 | 147 479 5 |
|--------------------------+--------------------------+--------------------------|
| 2 1479 1379 | 13469 149 8 | 13567 35679 1369 |
| 3489 1489 5 | 123469 7 12346 | 1368 2369 123689 |
| 3789 6 13789 | 5 129 123 | 1378 2379 4 |
|--------------------------+--------------------------+--------------------------|
| 5689 12589 4 | 7 12589 1235 | 3568 2356 2368 |
| 5678 2578 278 | 2348 2458 2345 | 9 1 2368 |
| 589 3 1289 | 1289 6 125 | 458 245 7 |
+--------------------------------------------------------------------------------+
# 180 eliminations remain
- Code: Select all
[r3c24,r5c249,r6c35,r7c259,r9c34] -- 12 cells
<1> in r35679[c6],r356 [c7] or * *** ** *** **
<2> in r35679[c6],r5679[c8] or ** ** * *** **
<8> in r35679[c1],r5679[c7] or ** * * * *** **
<9> in r35679[c1],r356 [c8] or * *** ** ** **
All candiates for <1289> in base set r35679 are indicated in the above table. Also, each value can be considered to be covered by two columns and a subset of the 12 cells listed. This means that the 12 cells must contain the three remaining truths for each of the four values. This accounts for the following eliminations:
- Code: Select all
<>3 r5c49,r6c3,r7c9
<>4 r35c24
<>5 r7c25
<>6 r5c49,r7c9
<>7 r3c2,r6c3
This leaves the eliminations for <1289> outside the base set but in the respective cover columns:
- Code: Select all
<>1 r4c7
<>2 r18c6
<>8 r28c1 (missing r5c1 found by Templates)
<>9 r4c8
Note: I am not certain about my comment in dark-red being true in the general case. I just know that it's true in this instance.
Any help would be appreciated!