MSLS puzzle challenge

Post puzzles for others to solve here.

MSLS puzzle challenge

Postby yzfwsf » Sat Oct 05, 2024 9:13 am

Code: Select all
...8...329...6......5....76.53......8...196......4....1.....4....27....8.........

This puzzle has MSLS but my solver can't find it, is there another solver that can find it?
After basic steps ,at this state puzzle have MSLS.
Code: Select all
+------------------------+-------------------------------+---------------------------+
| 7-4     1467     1467  | 8            579     1457     | 59(1)   3         2       |
| 9       2378-1   78-1  | 235(1)       6       2357-1   | 58(-1)  458(1)    45(1)   |
| 23-4    12348    5     | -23(149)     239     1234     | 89(1)   7         6       |
+------------------------+-------------------------------+---------------------------+
| 267(4)  5        3     | 26           278     2678     | 278(1)  -28(149)  -7(149) |
| 8       247      47    | 235          1       9        | 6       245       3457    |
| 267     19       19    | 2356         4       235678   | 23578   258       357     |
+------------------------+-------------------------------+---------------------------+
| 1       36789    6789  | 2356(9)      2358-9  23568    | 4       2569      3579    |
| 35(4)   -3(469)  2     | 7            35(9)   -35(146) | 35(1)   -5(169)   8       |
| 357-4   346789   46789 | -2356(14-9)  2358-9  1234568  | 2357-1  12569     13579   |
+------------------------+-------------------------------+---------------------------+


Last edited by yzfwsf on Sat Oct 05, 2024 9:44 pm, edited 1 time in total.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: MSLS puzzle challenge

Postby Cenoman » Sat Oct 05, 2024 9:32 pm

The puzzle (rated about 9.2) is solved in three steps:

Code: Select all
 +--------------------------+------------------------------+--------------------------+
 |  47     1467     1467    |  8         579     1457      |  159     3       2       |
 |  9      12378    178     |  1235      6       12357     |  158     1458    145     |
 |  234    12348    5       |  12349     239     1234      |  189     7       6       |
 +--------------------------+------------------------------+--------------------------+
 |  2467   5        3       |  26        278     2678      |  1278    12489   1479    |
 |  8      247      47      |  235       1       9         |  6       245     3457    |
 |  267    19       19      |  2356      4       235678    |  23578   258     357     |
 +--------------------------+------------------------------+--------------------------+
 |  1      36789    6789    |  23569     23589   23568     |  4       2569    3579    |
 |  345    3469     2       |  7         359     13456     |  135     1569    8       |
 |  3457   346789   46789   |  1234569   23589   1234568   |  12357   12569   13579   |
 +--------------------------+------------------------------+--------------------------+

1. (1)r2c789 = r13c7 - r4c7 = (19-4)r4c89 = r4c1 - (4=7)r5c3 - (7=4581)r2c3789 => -1 r2c246; lcls, 1 placement

Code: Select all
 +--------------------------+--------------------------+--------------------------+
 |  7-4    1467     1467    |  8      579    1457      |  59-1    3       2       |
 |  9      2378     178     |  235    6      2357      |  58-1    1458    145     |
 |  23-4   12348    5       |  14     239    1234      |  89-1    7       6       |
 +--------------------------+--------------------------+--------------------------+
 | <2467   5        3       | <26     <278  <278       | <1278    149-28  149-7   |
 |  8      247      47      |  235    1      9         |  6       245     3457    |
 |  267    19       19      |  2356   4      23578     |  23578   258     357     |
 +--------------------------+--------------------------+--------------------------+
 |  1      3678     678     |  9      2358   23568     |  4       256     357     |
 | <345    469-3    2       |  7     <35     146-35    | <135     169-5   8       |
 |  357-4  346789   46789   |  14     2358   1234568   |  2357-1  12569   13579   |
 +--------------------------+--------------------------+--------------------------+

2. MSLS r4c14567, r8c157:
8 cell Truths, 8 Links: 4c1, 1c8, 2678r4, 35r8
14 eliminations: -4r139c1, -1r1239c7, -2r4c8, -7r4c9, -8r4c8, -3r8c26, -5r8c68; lcls, 40 placements

PM 8x8 of the move:
Hidden Text: Show
Code: Select all
2r4c1   4r4c1   6r4c1   7r4c1
2r4c4           6r4c4
2r4c5                   7r4c5   8r4c5
2r4c6                   7r4c6   8r4c6
2r4c7                   7r4c7   8r4c7   1r4c7
                                        1r8c7   3r8c7   5r8c7
        4r8c1                                   3r8c1   5r8c1
                                                3r8c5   5r8c5
---------------------------------------------------------------
-2r4c8 -4r139c1        -7r4c9   -8r4c8  -1r9c7  -3r8c26 -5r8c68


Code: Select all
 +-----------------+------------------+------------------+
 |  7    6    14   |  8    5    14    |  9    3     2    |
 |  9    3    8    |  2    6    7     |  5    14    14   |
 |  2    14   5    |  14   9    3     |  8    7     6    |
 +-----------------+------------------+------------------+
 |  4    5    3    |  6    7    8     |  2    19    19   |
 |  8    2    7    |  3    1    9     |  6    45    45   |
 |  6    19   19   |  5    4    2     |  3    8     7    |
 +-----------------+------------------+------------------+
 |  1    7    6    |  9    8    5     |  4    2     3    |
 |  5    49   2    |  7    3    46    |  1    69    8    |
 |  3    8    49   |  14   2    146   |  7    569   59   |
 +-----------------+------------------+------------------+

3. Remote pair (14)[r1c3 = r1c6 - r3c4 = r9c4] => -4 r9c3; ste
or DP(1459)r2459c89 using single internal => +6r9c8; ste

@yzfwsf: is your expectation to see a MSLS yielding the same resolution state as the one at the end of my step #2 ?

Failed first version
Hidden Text: Show
If so, it is possible to combine steps #1, #2:
In the resolution state at the start of step #2, note that the only difference within MSLS cells is the candidate 9r8c5.
At the start of step #1, the resolution state is an almost MSLS:
[(1)r2c789 = r13c7 - r4c7 = (19-4)r4c89 = r4c1 - (4=7)r5c3 - (7=4581)r2c3789] - r2c4 = (14-9)r39c4 = r7c4 - (9)r8c5 = [MSLS] => the MSLS is True, and all its eliminations can be done.
Matrix of the move (MBM 15x15):
Code: Select all
2r4c1   4r4c1   6r4c1   7r4c1                                 |
2r4c4           6r4c4                                         |
2r4c5                   7r4c5   8r4c5                         |
2r4c6                   7r4c6   8r4c6                         |
2r4c7                   7r4c7   8r4c7   1r4c7                 |
                                        1r8c7   3r8c7   5r8c7 |
        4r8c1                                   3r8c1   5r8c1 |
                                                3r8c5   5r8c5 | 9r8c5
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  9r7c4   9r39c4                                                       
                                                                       14r39c4   1r2c4
                                                                                1r2c789  1r13c7
                                                                                          1r4c7  19r4c89
                                                                                                  4r4c89  4r4c1
                                                                                                          4r5c3     7r5c3
                                                                                1r2c3789                         4587r2c3789

The matrix is of the type MBM (Mixed Block Matrix) with the MSLS PM 8x8 at its left-up part, and a TM 7x7 at its right-bottom part.
The first ten columns can be brought at the position of col #1, producing then the corresponding eliminations:
- for col # to #8: the 14 MSLS eliminations (-4r139c1, -1r1239c7, -2r4c8, -7r4c9, -8r4c8, -3r8c26, -5r8c68)
- for col # & #10: -9 b8p278, -23 r3c4, -2356r9c4
Note: -4 r1c1 & -1r1c7 are the effective eliminations yielding step #3 resolution state.

Added.
Silly me ! How could I missed that ? :oops:
I bothered to append additional truths and links to my step#2 MSLS, and didn't see that my first 12 rows brought an answer to the challenge:
Code: Select all
2r4c1   4r4c1   6r4c1   7r4c1                                 
2r4c4           6r4c4                                         
2r4c5                   7r4c5   8r4c5                         
2r4c6                   7r4c6   8r4c6                         
2r4c7                   7r4c7   8r4c7   1r4c7                 
                                        1r8c7   3r8c7   5r8c7
        4r8c1                                   3r8c1   5r8c1
                                                3r8c5   5r8c5  9r8c5
                                                               9r7c4  9r3c4  9r9c4
                                                                      4r3c4  4r9c4
                                                                      1r3c4  1r9c4  1r2c4
                                        1r13c7                                      1r2c789

12 Truths: 4n14567, 8n157, 149c4, 1b3
12 Links: 4c1, 1c7, 2678r4, 35r8, 9b8, 39n4, 1r2
24 eliminations: -4 r139c1, -28r4c8, -7 r4c9, -1 r29c7, -3 r8c26, -5 r8c68, -9 b8p278, - 23 r3c4, -2356r9c4, -1 r2c236; ste

Rank 0 logic, but not exactly a MSLS (4 Truths are not cell-truths). It has inspired me another presentation of the logic. See my post below.
Last edited by Cenoman on Tue Oct 08, 2024 9:28 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: MSLS puzzle challenge

Postby yzfwsf » Sat Oct 05, 2024 9:42 pm

Cenoman wrote:@yzfwsf: is your expectation to see a MSLS yielding the same resolution state as the one at the end of my step #2 ?

Yes, but the resolution state at the beginning is different.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: MSLS puzzle challenge

Postby blue » Sun Oct 06, 2024 6:09 pm

yzfwsf wrote:This puzzle has MSLS but my solver can't find it, is there another solver that can find it?

This isn't from a public domain solver, but here's one:

Code: Select all
+-----------------------+---------------------------+-------------------------+
| 7-4     1467    1467  | 8         579     1457    | (159)    3       2      |
| 9       2378-1  78-1  | (1235)    6       2357-1  | (58-1)   (1458)  (145)  |
| 23-4    12348   5     | 149-23    239     1234    | (189)    7       6      |
+-----------------------+---------------------------+-------------------------+
| (2467)  5       3     | (26)      278     2678    | (1278)   149-28  149-7  |
| 8       (247)   (47)  | (235)     1       9       | 6        (245)   (3457) |
| (267)   19      19    | (2356)    4       235678  | (23578)  (258)   (357)  |
+-----------------------+---------------------------+-------------------------+
| 1       36789   6789  | (23569)   2358-9  23568   | 4        2569    3579   |
| (345)   469-3   2     | 7         (359)   146-35  | (135)    169-5   8      |
| 357-4   346789  46789 | 14-23569  2358-9  1234568 | 2357-1   12569   13579  |
+-----------------------+---------------------------+-------------------------+

23 Truths = {468N1 5N2 5N3 24567N4 8N5 123468N7 256N8 256N9}
23 Links = {1r2 4r5 35r8 4c1 2356c4 1c7 4589b3 267b4 23578b6 9b8}
24 Eliminations --> r9c4<>23569, r2c2367<>1, r139c1<>4, r8c26<>3,
        r8c68<>5, r79c5<>9, r3c4<>23, r4c8<>28, r4c9<>7, r9c7<>1,

The cell list is: b3p14567, b4p1567, b6p156789, r24567c4, r8c157
After that and "basics", a "4c34" skyscraper reduces it to singles:
(Added: This is also Cenoman's final state.)

Code: Select all
+--------------+--------------+------------+
| 7  6    1(4) | 8     5  1-4 | 9  3    2  |
| 9  3    8    | 2     6  7   | 5  14   14 |
| 2  1-4  5    | 1(4)  9  3   | 8  7    6  |
+--------------+--------------+------------+
| 4  5    3    | 6     7  8   | 2  19   19 |
| 8  2    7    | 3     1  9   | 6  45   45 |
| 6  19   19   | 5     4  2   | 3  8    7  |
+--------------+--------------+------------+
| 1  7    6    | 9     8  5   | 4  2    3  |
| 5  49   2    | 7     3  46  | 1  69   8  |
| 3  8    9(4) | 1(4)  2  146 | 7  569  59 |
+--------------+--------------+------------+
blue
 
Posts: 1045
Joined: 11 March 2013

Re: MSLS puzzle challenge

Postby yzfwsf » Mon Oct 07, 2024 8:14 am

blue wrote:This isn't from a public domain solver, but here's one:

Awesome!
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: MSLS puzzle challenge

Postby shye » Mon Oct 07, 2024 5:39 pm

blue wrote:23 Truths = {468N1 5N2 5N3 24567N4 8N5 123468N7 256N8 256N9}
23 Links = {1r2 4r5 35r8 4c1 2356c4 1c7 4589b3 267b4 23578b6 9b8}
24 Eliminations --> r9c4<>23569, r2c2367<>1, r139c1<>4, r8c26<>3, r8c68<>5, r79c5<>9, r3c4<>23, r4c8<>28, r4c9<>7, r9c7<>1

great find! here's a multifish inversion that reduces the truth count to 11, makes it a bit more digestable i think:

base: 1b3, 149c4, 149r4, 1469r8
covers: 1r2, 1c7, 4c1, 9b8, r39c4, r4c89, r8c268

XSudo input: Show
11 Truths = {149R4 1469R8 149C4 1B3}
11 Links = {1r2 1c7 4c1 3n4 4n89 8n268 9n4 9b8}
24 Eliminations --> r9c4<>23569, r2c2367<>1, r139c1<>4, r8c26<>3, r8c68<>5, r79c5<>9, r3c4<>23, r4c8<>28, r4c9<>7, r9c7<>1
User avatar
shye
 
Posts: 323
Joined: 12 June 2021

Re: MSLS puzzle challenge

Postby yzfwsf » Mon Oct 07, 2024 10:29 pm

shye wrote:great find! here's a multifish inversion that reduces the truth count to 11


Multifish [20,242] 30 Candidates,
10 Truths = {149R4 149C4 8N157 1B3}
10 Links = {1r2 35r8 1c7 4c1 39n4 4n8 4n9 9b8}
24 Eliminations --> r9c4<>23569, r2c2367<>1, r139c1<>4, r8c26<>3, r8c68<>5, r79c5<>9,
r3c4<>23, r4c8<>28, r4c9<>7, r9c7<>1,
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: MSLS puzzle challenge

Postby blue » Tue Oct 08, 2024 3:10 am

Like the last one, but with no "cannibal" eliminations:

10 Truths = {49R4 1C489 4C4 8N157 9B2}
10 Links = {1r2 35r8 4c1 9c5 39n4 4n8 4n9 1b9}
24 Eliminations --> r9c4<>23569, r2c2367<>1, r139c1<>4, r8c26<>3,
r8c68<>5, r79c5<>9, r3c4<>23, r4c8<>28, r4c9<>7, r9c7<>1,
blue
 
Posts: 1045
Joined: 11 March 2013

Re: MSLS puzzle challenge

Postby Cenoman » Tue Oct 08, 2024 9:35 pm

I have edited my post above. While correcting my failed first trial, I have found another way to present the same logic. I call that "AALS Kraken Loop" (same type as yzfwsf's 'Blossom Loop', but with an AALS as a stem)
Code: Select all
 +--------------------------+------------------------------+--------------------------+
 |  7-4    1467     1467    |  8         579     1457      | F159     3       2       |
 |  9      2378-1   78-1    | D1235      6       2357-1    | E58-1   E1458   E145     |
 |  23-4   12348    5       | C149-23    239     1234      | F189     7       6       |
 +--------------------------+------------------------------+--------------------------+
 | b2467   5        3       |  26        278     2678      | d1278   c149-28 c149-7   |
 |  8      247      47      |  235       1       9         |  6       245     3457    |
 |  267    19       19      |  2356      4       235678    |  23578   258     357     |
 +--------------------------+------------------------------+--------------------------+
 |  1      36789    6789    | B23569     2358-9  23568     |  4       2569    3579    |
 |za345    469-3    2       |  7       zA359     146-35    | z135     169-5   8       |
 |  357-4  346789   46789   | C14-23569  2358-9  1234568   |  2357-1  12569   13579   |
 +--------------------------+------------------------------+--------------------------+

AALS Kraken Loop (13459)r8c157
(4)r8c1 - r4c1 = (49-1)r4c89 = (1)r4c7
(9)r8c5 - r7c4 = (94-1)r39c4 = r2c4 - r2c789 = (1)r13c7
(351)r8c157
=> same 24 eliminations: -1 r29c7, -4 r139c1, -28r4c8, -7 r4c9, -9 b8p278, - 23 r3c4, -2356r9c4, -1 r2c236, -3 r8c26, -5 r8c68; lcls, 41 placements; then end as above.
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: MSLS puzzle challenge

Postby yzfwsf » Tue Oct 08, 2024 11:39 pm

Cenoman wrote:I have edited my post above. While correcting my failed first trial, I have found another way to present the same logic. I call that "AALS Kraken Loop" (same type as yzfwsf's 'Blossom Loop', but with an AALS as a stem)

I also found it manually, and now I plan to implement it in Blossom Loop.
yzfwsf
 
Posts: 905
Joined: 16 April 2019


Return to Puzzles