The puzzle (rated about 9.2) is solved in three steps:
- Code: Select all
+--------------------------+------------------------------+--------------------------+
| 47 1467 1467 | 8 579 1457 | 159 3 2 |
| 9 12378 178 | 1235 6 12357 | 158 1458 145 |
| 234 12348 5 | 12349 239 1234 | 189 7 6 |
+--------------------------+------------------------------+--------------------------+
| 2467 5 3 | 26 278 2678 | 1278 12489 1479 |
| 8 247 47 | 235 1 9 | 6 245 3457 |
| 267 19 19 | 2356 4 235678 | 23578 258 357 |
+--------------------------+------------------------------+--------------------------+
| 1 36789 6789 | 23569 23589 23568 | 4 2569 3579 |
| 345 3469 2 | 7 359 13456 | 135 1569 8 |
| 3457 346789 46789 | 1234569 23589 1234568 | 12357 12569 13579 |
+--------------------------+------------------------------+--------------------------+
1. (1)r2c789 = r13c7 - r4c7 = (19-4)r4c89 = r4c1 - (4=7)r5c3 - (7=4581)r2c3789 => -1 r2c246; lcls, 1 placement
- Code: Select all
+--------------------------+--------------------------+--------------------------+
| 7-4 1467 1467 | 8 579 1457 | 59-1 3 2 |
| 9 2378 178 | 235 6 2357 | 58-1 1458 145 |
| 23-4 12348 5 | 14 239 1234 | 89-1 7 6 |
+--------------------------+--------------------------+--------------------------+
| <2467 5 3 | <26 <278 <278 | <1278 149-28 149-7 |
| 8 247 47 | 235 1 9 | 6 245 3457 |
| 267 19 19 | 2356 4 23578 | 23578 258 357 |
+--------------------------+--------------------------+--------------------------+
| 1 3678 678 | 9 2358 23568 | 4 256 357 |
| <345 469-3 2 | 7 <35 146-35 | <135 169-5 8 |
| 357-4 346789 46789 | 14 2358 1234568 | 2357-1 12569 13579 |
+--------------------------+--------------------------+--------------------------+
2. MSLS r4c14567, r8c157:
8 cell Truths, 8 Links: 4c1, 1c8, 2678r4, 35r8
14 eliminations: -4r139c1, -1r1239c7, -2r4c8, -7r4c9, -8r4c8, -3r8c26, -5r8c68; lcls, 40 placements
PM 8x8 of the move:
- Code: Select all
2r4c1 4r4c1 6r4c1 7r4c1
2r4c4 6r4c4
2r4c5 7r4c5 8r4c5
2r4c6 7r4c6 8r4c6
2r4c7 7r4c7 8r4c7 1r4c7
1r8c7 3r8c7 5r8c7
4r8c1 3r8c1 5r8c1
3r8c5 5r8c5
---------------------------------------------------------------
-2r4c8 -4r139c1 -7r4c9 -8r4c8 -1r9c7 -3r8c26 -5r8c68
- Code: Select all
+-----------------+------------------+------------------+
| 7 6 14 | 8 5 14 | 9 3 2 |
| 9 3 8 | 2 6 7 | 5 14 14 |
| 2 14 5 | 14 9 3 | 8 7 6 |
+-----------------+------------------+------------------+
| 4 5 3 | 6 7 8 | 2 19 19 |
| 8 2 7 | 3 1 9 | 6 45 45 |
| 6 19 19 | 5 4 2 | 3 8 7 |
+-----------------+------------------+------------------+
| 1 7 6 | 9 8 5 | 4 2 3 |
| 5 49 2 | 7 3 46 | 1 69 8 |
| 3 8 49 | 14 2 146 | 7 569 59 |
+-----------------+------------------+------------------+
3. Remote pair (14)[r1c3 = r1c6 - r3c4 = r9c4] => -4 r9c3; ste
or DP(1459)r2459c89 using single internal => +6r9c8; ste
@yzfwsf: is your expectation to see a MSLS yielding the same resolution state as the one at the end of my step #2 ?
Failed first version
If so, it is possible to combine steps #1, #2:
In the resolution state at the start of step #2, note that the only difference within MSLS cells is the candidate 9r8c5.
At the start of step #1, the resolution state is an almost MSLS:
[(1)r2c789 = r13c7 - r4c7 = (19-4)r4c89 = r4c1 - (4=7)r5c3 - (7=4581)r2c3789] - r2c4 = (14-9)r39c4 = r7c4 - (9)r8c5 = [MSLS] => the MSLS is True, and all its eliminations can be done.
Matrix of the move (MBM 15x15):
- Code: Select all
2r4c1 4r4c1 6r4c1 7r4c1 |
2r4c4 6r4c4 |
2r4c5 7r4c5 8r4c5 |
2r4c6 7r4c6 8r4c6 |
2r4c7 7r4c7 8r4c7 1r4c7 |
1r8c7 3r8c7 5r8c7 |
4r8c1 3r8c1 5r8c1 |
3r8c5 5r8c5 | 9r8c5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9r7c4 9r39c4
14r39c4 1r2c4
1r2c789 1r13c7
1r4c7 19r4c89
4r4c89 4r4c1
4r5c3 7r5c3
1r2c3789 4587r2c3789
The matrix is of the type MBM (Mixed Block Matrix) with the MSLS PM 8x8 at its left-up part, and a TM 7x7 at its right-bottom part.
The first ten columns can be brought at the position of col #1, producing then the corresponding eliminations:
- for col # to #8: the 14 MSLS eliminations (-4r139c1, -1r1239c7, -2r4c8, -7r4c9, -8r4c8, -3r8c26, -5r8c68)
- for col # & #10: -9 b8p278, -23 r3c4, -2356r9c4
Note: -4 r1c1 & -1r1c7 are the effective eliminations yielding step #3 resolution state.
Added.Silly me ! How could I missed that ?
I bothered to append additional truths and links to my step#2 MSLS, and didn't see that my first 12 rows brought an answer to the challenge:
- Code: Select all
2r4c1 4r4c1 6r4c1 7r4c1
2r4c4 6r4c4
2r4c5 7r4c5 8r4c5
2r4c6 7r4c6 8r4c6
2r4c7 7r4c7 8r4c7 1r4c7
1r8c7 3r8c7 5r8c7
4r8c1 3r8c1 5r8c1
3r8c5 5r8c5 9r8c5
9r7c4 9r3c4 9r9c4
4r3c4 4r9c4
1r3c4 1r9c4 1r2c4
1r13c7 1r2c789
12 Truths: 4n14567, 8n157, 149c4, 1b3
12 Links: 4c1, 1c7, 2678r4, 35r8, 9b8, 39n4, 1r2
24 eliminations: -4 r139c1, -28r4c8, -7 r4c9, -1 r29c7, -3 r8c26, -5 r8c68, -9 b8p278, - 23 r3c4, -2356r9c4, -1 r2c236; ste
Rank 0 logic, but not exactly a MSLS (4 Truths are not cell-truths). It has inspired me another presentation of the logic. See my post below.