- Code: Select all
(solve-sudoku-grid
+-------+-------+-------+
! . . 3 ! . 1 . ! . . . !
! . 4 1 ! . . . ! 5 9 . !
! 2 . . ! . 6 5 ! . . 3 !
+-------+-------+-------+
! 5 . . ! . . 8 ! 9 . . !
! . . . ! . 7 . ! . . . !
! . . 9 ! 3 . . ! . . 2 !
+-------+-------+-------+
! 3 . . ! 8 4 . ! . . 6 !
! . 2 6 ! . . . ! 4 3 . !
! . . . ! . 3 . ! 8 . . !
+-------+-------+-------+
)
Requires only the simplest (3D) bivalue-chains:
- Code: Select all
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin
*** Using CLIPS 6.32-r770
***********************************************************************************************
singles
;;; Resolution state RS1
102 candidates, 284 csp-links and 284 links. Density = 5.51%
whip[1]: r8n7{c6 .} ==> r9c6 ≠ 7, r7c6 ≠ 7, r9c4 ≠ 7
finned-x-wing-in-columns: n7{c7 c1}{r6 r7} ==> r7c3 ≠ 7
naked-single ==> r7c3 = 5
whip[1]: r7n7{c8 .} ==> r9c8 ≠ 7
biv-chain[3]: r1c8{n6 n2} - r9n2{c8 c6} - c6n6{r9 r6} ==> r6c8 ≠ 6
biv-chain[3]: r4n6{c8 c4} - r9c4{n6 n5} - c8n5{r9 r5} ==> r5c8 ≠ 6
biv-chain-cn[4]: c7n2{r7 r1} - c7n6{r1 r6} - c6n6{r6 r9} - c6n2{r9 r7} ==> r7c8 ≠ 2
biv-chain[3]: r7c8{n1 n7} - c7n7{r7 r6} - b6n6{r6c7 r4c8} ==> r4c8 ≠ 1
naked-pairs-in-a-block: b6{r4c8 r6c7}{n6 n7} ==> r6c8 ≠ 7
biv-chain[3]: r4n1{c4 c9} - c9n4{r4 r5} - r5c1{n4 n1} ==> r5c4 ≠ 1
biv-chain[3]: r5c4{n6 n4} - c9n4{r5 r4} - r4n1{c9 c4} ==> r4c4 ≠ 6
stte
One can also start directly after the obvious singles (resolution state RS1; Cenoman's PM, without the markings):
- Code: Select all
(solve-sukaku-grid
+-------------------+-------------------+--------------------+
! 9 5 3 ! 47 1 47 ! 26 26 8 !
! 6 4 1 ! 2 8 3 ! 5 9 7 !
! 2 7 8 ! 9 6 5 ! 1 4 3 !
+-------------------+-------------------+--------------------+
! 5 3 47 ! 146 2 8 ! 9 167 14 !
! 14 68 2 ! 146 7 9 ! 3 1568 145 !
! 147 86 9 ! 3 5 146 ! 67 1786 2 !
+-------------------+-------------------+--------------------+
! 3 9 57 ! 8 4 12 ! 27 1572 6 !
! 8 2 6 ! 157 9 17 ! 4 3 15 !
! 47 1 457 ! 56 3 26 ! 8 257 9 !
+-------------------+-------------------+--------------------+
)