.
9 Singles to
- Code: Select all
6 5 3 4 89 1 79 2 78
2 4 1 79 389 3789 679 5 678
78 78 9 2 6 5 1 4 3
5 127 2467 16 123 234 367 8 9
18 128 268 1569 7 2389 356 16 4
9 3 4678 156 158 48 567 167 2
3 179 57 8 4 6 2 179 157
178 6 2578 1579 1259 279 4 3 157
4 1279 257 3 1259 279 8 1679 1567
whip[1]: c9n1{r9 .} ==> r9c8 ≠ 1, r7c8 ≠ 1
whip[1]: r8n9{c6 .} ==> r9c6 ≠ 9, r9c5 ≠ 9
whip[1]: r1n7{c9 .} ==> r2c9 ≠ 7, r2c7 ≠ 7
Resolution state RS1, as the starting point for all the following solutions:
- Code: Select all
6 5 3 4 89 1 79 2 78
2 4 1 79 389 3789 69 5 68
78 78 9 2 6 5 1 4 3
5 127 2467 16 123 234 367 8 9
18 128 268 1569 7 2389 356 16 4
9 3 4678 156 158 48 567 167 2
3 179 57 8 4 6 2 79 157
178 6 2578 1579 1259 279 4 3 157
4 1279 257 3 125 27 8 679 1567
I propose 4 solutions, in my order of preference.
1) Simplest-first solution, using only elementary patterns: Show hidden-triplets-in-a-row: r5{n3 n5 n9}{c6 c7 c4} ==> r5c7 ≠ 6, r5c6 ≠ 8, r5c6 ≠ 2, r5c4 ≠ 6, r5c4 ≠ 1
whip[1]: r5n2{c3 .} ==> r4c2 ≠ 2, r4c3 ≠ 2
whip[1]: b5n8{r6c6 .} ==> r6c3 ≠ 8
finned-swordfish-in-rows: n1{r7 r9 r4}{c2 c9 c5} ==> r6c5 ≠ 1
biv-chain-rc[3]: r3c1{n7 n8} - r5c1{n8 n1} - r4c2{n1 n7} ==> r3c2 ≠ 7
singles ==> r3c2 = 8, r3c1 = 7
biv-chain-rc[3]: r1c5{n9 n8} - r6c5{n8 n5} - r5c4{n5 n9} ==> r2c4 ≠ 9
naked-single ==> r2c4 = 7
biv-chain[3]: r5c8{n6 n1} - r6n1{c8 c4} - b5n6{r6c4 r4c4} ==> r4c7 ≠ 6
z-chain-rc[3]: r9c6{n7 n2} - r9c3{n2 n5} - r7c3{n5 .} ==> r9c2 ≠ 7
biv-chain[4]: r2n3{c5 c6} - r5n3{c6 c7} - b6n5{r5c7 r6c7} - r6c5{n5 n8} ==> r2c5 ≠ 8
biv-chain[4]: c7n6{r6 r2} - r2c9{n6 n8} - b2n8{r2c6 r1c5} - r6c5{n8 n5} ==> r6c7 ≠ 5
singles ==> r5c7 = 5, r5c4 = 9, r5c6 = 3, r2c5 = 3, r4c7 = 3, r6c3 ≠ 7
z-chain-rc[3]: r4c5{n1 n2} - r9c5{n2 n5} - r8c4{n5 .} ==> r8c5 ≠ 1
biv-chain-rc[4]: r2c7{n6 n9} - r2c6{n9 n8} - r6c6{n8 n4} - r6c3{n4 n6} ==> r6c7 ≠ 6
stte
The puzzle has a lot of anti-backdoor-pairs (837). I haven't tried them all, but until now, a quarter of them give rise to 2-step solutions (possibly with long whips).
I found two 2-step solutions in W8:
2) Two two-step solutions in W8: Show whip[8]: r1c5{n8 n9} - r1c7{n9 n7} - b6n7{r6c7 r6c8} - c8n1{r6 r5} - b4n1{r5c2 r4c2} - r4n7{c2 c3} - r4n4{c3 c6} - r6c6{n4 .} ==> r2c6 ≠ 8
whip[1]: c6n8{r6 .} ==> r6c5 ≠ 8
whip[4]: c1n1{r8 r5} - c8n1{r5 r6} - r6c5{n1 n5} - b8n5{r8c5 .} ==> r8c4 ≠ 1
whip[1]: b8n1{r9c5 .} ==> r4c5 ≠ 1, r6c5 ≠ 1
stte
--------
whip[8]: r1c5{n8 n9} - r1c7{n9 n7} - b6n7{r6c7 r6c8} - r6n1{c8 c4} - r4n1{c5 c2} - r4n7{c2 c3} - r4n4{c3 c6} - r6c6{n4 .} ==> r6c5 ≠ 8
whip[1]: b5n8{r6c6 .} ==> r2c6 ≠ 8
whip[4]: c1n1{r8 r5} - c8n1{r5 r6} - r6c5{n1 n5} - b8n5{r8c5 .} ==> r8c4 ≠ 1
whip[1]: b8n1{r9c5 .} ==> r4c5 ≠ 1, r6c5 ≠ 1
stte
The puzzle has few anti-backdoors:
- Code: Select all
5 BRT-ANTI-BACKDOORS FOUND:
n8r8c3 n1r8c1 n1r5c8 n8r5c1 n6r4c4
9 W1-ANTI-BACKDOORS FOUND:
n7r9c6 n8r8c3 n1r8c1 n1r7c9 n5r7c3 n1r5c8 n8r5c1 n6r4c4 n1r4c2
Starting from RS1, I've found 4 single-step solutions, all with very long whips:
3) Single-step solutions with long whips: Show whip[15]: b8n1{r8c5 r9c5} - c9n1{r9 r7} - r7n5{c9 c3} - r9n5{c3 c9} - r8c9{n5 n7} - c8n7{r9 r6} - r6n1{c8 c4} - r4c4{n1 n6} - r4c7{n6 n3} - c5n3{r4 r2} - c6n3{r2 r5} - r5n9{c6 c4} - b5n5{r5c4 r6c5} - c5n8{r6 r1} - r1c9{n8 .} ==> r8c1 ≠ 1
stte
whip[15]: b4n1{r5c2 r4c2} - c1n1{r5 r8} - b8n1{r8c5 r9c5} - c9n1{r9 r7} - r7n5{c9 c3} - r9n5{c3 c9} - c9n6{r9 r2} - r2c7{n6 n9} - r1c7{n9 n7} - r4n7{c7 c3} - r4n4{c3 c6} - r6c6{n4 n8} - r2n8{c6 c5} - c5n3{r2 r4} - r4n2{c5 .} ==> r5c8 ≠ 1
stte
whip[16]: c1n1{r5 r8} - b8n1{r8c5 r9c5} - c9n1{r9 r7} - r7n5{c9 c3} - r9n5{c3 c9} - r8c9{n5 n7} - c8n7{r9 r6} - r6n1{c8 c4} - r4c4{n1 n6} - r4c7{n6 n3} - c5n3{r4 r2} - c6n3{r2 r5} - r5n9{c6 c4} - b5n5{r5c4 r6c5} - c5n8{r6 r1} - r1c9{n8 .} ==> r5c1 ≠ 8
stte
whip[14]: c1n1{r5 r8} - b8n1{r8c5 r9c5} - c9n1{r9 r7} - r7n5{c9 c3} - r9n5{c3 c9} - c9n6{r9 r2} - r2c7{n6 n9} - r1c7{n9 n7} - r4n7{c7 c3} - r4n4{c3 c6} - r6c6{n4 n8} - r2n8{c6 c5} - c5n3{r2 r4} - r4n2{c5 .} ==> r4c2 ≠ 1
whip[1]: r4n1{c5 .} ==> r5c4 ≠ 1, r6c4 ≠ 1, r6c5 ≠ 1
stte
4) Single-step solution with Forcing T&E: Show FORCING-T&E(BRT) applied to bivalue candidates n1r5c1 and n1r8c1 :
===> 22 values decided in both cases: n9r1c7 n8r1c5 n8r2c9 n5r6c5 n3r4c7 n5r5c7 n2r4c5 n4r4c6 n8r6c6 n4r6c3 n8r3c2 n2r5c2 n7r3c1 n9r5c4 n3r5c6 n5r8c4 n9r8c5 n1r9c5 n9r9c2 n9r7c8 n3r2c5 n9r2c6
===> 70 candidates eliminated in both cases: n9r1c5 n7r1c7 n8r1c9 n9r2c4 n8r2c5 n9r2c5 n3r2c6 n7r2c6 n8r2c6 n9r2c7 n6r2c9 n7r2c9 n8r3c1 n7r3c2 n2r4c2 n2r4c3 n4r4c3 n1r4c5 n3r4c5 n2r4c6 n3r4c6 n6r4c7 n7r4c7 n1r5c2 n8r5c2 n2r5c3 n1r5c4 n5r5c4 n6r5c4 n2r5c6 n8r5c6 n9r5c6 n3r5c7 n6r5c7 n6r6c3 n7r6c3 n8r6c3 n5r6c4 n1r6c5 n8r6c5 n4r6c6 n5r6c7 n6r6c8 n9r7c2 n1r7c8 n7r7c8 n7r7c9 n7r8c1 n5r8c3 n7r8c3 n1r8c4 n7r8c4 n9r8c4 n1r8c5 n2r8c5 n5r8c5 n9r8c6 n5r8c9 n1r9c2 n2r9c2 n7r9c2 n7r9c3 n2r9c5 n5r9c5 n9r9c5 n9r9c6 n1r9c8 n9r9c8 n1r9c9 n7r9c9
- Code: Select all
CURRENT RESOLUTION STATE:
6 5 3 4 8 1 9 2 7
2 4 1 7 3 9 67 5 8
7 8 9 2 6 5 1 4 3
5 17 67 16 2 4 3 8 9
18 2 68 9 7 3 5 16 4
9 3 4 16 5 8 67 17 2
3 17 57 8 4 6 2 9 15
18 6 28 5 9 27 4 3 17
4 9 25 3 1 27 8 67 56
stte