More Pi 12 (SER 8.3)

Post puzzles for others to solve here.

More Pi 12 (SER 8.3)

Postby mith » Mon Feb 08, 2021 5:49 pm

Code: Select all
+-------+-------+-------+
| . . 3 | 1 . . | . . . |
| 4 1 . | . . . | 5 . . |
| 9 . . | 2 6 5 | . 3 . |
+-------+-------+-------+
| . 5 8 | . . . | 9 . . |
| . . . | . 7 . | . . . |
| . . 9 | . . . | 3 2 . |
+-------+-------+-------+
| . 3 . | 8 4 6 | . . 2 |
| . . 6 | . . . | . 4 3 |
| . . . | . . 3 | 8 . . |
+-------+-------+-------+
..31.....41....5..9..265.3..58...9......7......9...32..3.846..2..6....43.....38..
mith
 
Posts: 996
Joined: 14 July 2020

Re: More Pi 12 (SER 8.3)

Postby SteveG48 » Mon Feb 08, 2021 6:41 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 5      6      3      | 1     e89     4      | 2      7-8    789    |
 | 4      1      2      | 379    389    789    | 5     a68     689    |
 | 9      8      7      | 2      6      5      | 4      3      1      |
 *----------------------+----------------------+----------------------|
 |c12367  5      8      | 346    123    12     | 9      17     47     |
 |b123    24   bc14     | 3459   7      1289   | 6     a158    458    |
 |c167    47     9      | 456    158    18     | 3      2      4578   |
 *----------------------+----------------------+----------------------|
 |c17     3      5      | 8      4      6      | 17     9      2      |
 | 8      279    6      | 579    1259   1279   | 17     4      3      |
 |d127    2479  d14     | 79    d129    3      | 8     a56     56     |
 *--------------------------------------------------------------------*


(8=561)r259c8 - 1r5c13 = (174)r467c1,r5c3 - (4|7=129)r9c135 - (9=8)r1c5 => -8 r1c8 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4496
Joined: 08 November 2013
Location: Orlando, Florida

Re: More Pi 12 (SER 8.3)

Postby denis_berthier » Mon Feb 08, 2021 7:37 pm

This puzzle has
- 9 anti-backdoors : n6r9c9 n5r9c8 n1r9c3 n4r9c2 n7r8c7 n9r8c2 n1r7c7 n7r7c1 n8r6c6 n7r6c2 n1r5c8 n4r5c3 n4r4c9 n7r4c8 n9r2c9 n6r2c8 n7r1c9 n8r1c8 n9r1c5
- 21 W1-anti-backdoors: n6r9c9 n5r9c8 n1r9c3 n4r9c2 n7r8c7 n9r8c2 n1r7c7 n7r7c1 n8r6c6 n7r6c2 n1r6c1 n1r5c8 n9r5c6 n4r5c3 n4r4c9 n7r4c8 n9r2c9 n6r2c8 n7r1c9 n8r1c8 n9r1c5

The following 8 give rise to single-step solutions (modulo W1):
n1r9c3: whip[9]: r7c1{n1 n7} - r9c1{n7 n2} - r9c5{n2 n9} - r1c5{n9 n8} - r1c8{n8 n7} - r4c8{n7 n1} - r4c6{n1 n2} - r4c5{n2 n3} - r2c5{n3 .} ==> r9c3 ≠ 1
n4r9c2: whip[10]: r9c3{n4 n1} - r7c1{n1 n7} - r9n7{c2 c4} - r9n9{c4 c5} - r1c5{n9 n8} - r1c8{n8 n7} - r4c8{n7 n1} - r4c6{n1 n2} - r4c5{n2 n3} - r2c5{n3 .} ==> r9c2 ≠ 4
n1r6c1: whip[10]: c3n1{r5 r9} - r7c1{n1 n7} - r9c1{n7 n2} - r9c5{n2 n9} - r1c5{n9 n8} - r1c8{n8 n7} - r4c8{n7 n1} - r4c6{n1 n2} - r4c5{n2 n3} - r2c5{n3 .} ==> r6c1 ≠ 1
nr15c8: whip[7]: c3n1{r5 r9} - r7c1{n1 n7} - r9c1{n7 n2} - r9c5{n2 n9} - r1c5{n9 n8} - r1c8{n8 n7} - r4c8{n7 .} ==> r5c8 ≠ 1
n4r5c3: whip[10]: r9c3{n4 n1} - r7c1{n1 n7} - r9c1{n7 n2} - r9c5{n2 n9} - r1c5{n9 n8} - r1c8{n8 n7} - r4c8{n7 n1} - r4c6{n1 n2} - r4c5{n2 n3} - r2c5{n3 .} ==> r5c3 ≠ 4
n7r4c8: whip[7]: c8n1{r4 r5} - c3n1{r5 r9} - r7c1{n1 n7} - r9c1{n7 n2} - r9c5{n2 n9} - r1c5{n9 n8} - r1c8{n8 .} ==> r4c8 ≠ 7
n7r1c9: whip[7]: c8n7{r1 r4} - c8n1{r4 r5} - c3n1{r5 r9} - r7c1{n1 n7} - r9c1{n7 n2} - r9c5{n2 n9} - r1n9{c5 .} ==> r1c9 ≠ 7
n8r1c8: whip[7]: c8n7{r1 r4} - c8n1{r4 r5} - c3n1{r5 r9} - r7c1{n1 n7} - r9c1{n7 n2} - r9c5{n2 n9} - r1c5{n9 .} ==> r1c8 ≠ 8
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: More Pi 12 (SER 8.3)

Postby Leren » Mon Feb 08, 2021 8:05 pm

Code: Select all
*-------------------------------------------------------*
| 5      6      3   | 1    D89   4    | 2    78   C789  |
| 4      1      2   | 379   389  789  | 5    68    689  |
| 9      8      7   | 2     6    5    | 4    3     1    |
|-------------------+-----------------+-----------------|
| 12367  5      8   | 346   123  12   | 9  Aa1-7a B47   |
| 123   d24    c14c | 3459  7    1289 | 6   b158b  458  |
| 167   d47     9   | 456   158  18   | 3    2    B4578 |
|-------------------+-----------------+-----------------|
| 17e    3      5   | 8     4    6    | 17   9     2    |
| 8      279    6   | 579   1259 1279 | 17   4     3    |
| 127f  e2479f  14d | 79g  E129  3    | 8    56    56   |
*-------------------------------------------------------*

Kraken Row 9 Digit 9: 

7 r4c8 - 1 r4c8 = r5c8 - (1=4) r5c3 - r56c2 = 4 r9c2               - 9 r9c2;

7 r4c8 - 1 r4c8 = r5c8 - r5c3 = r9c3 - (1=7) r7c1 - r9c12 = 7 r9c4 - 9 r9c4;

7 r4c8 - r46c9 = (7-9) r1c9 = r1c5                                 - 9 r9c5; => - 7 r4c8; stte

Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: More Pi 12 (SER 8.3)

Postby pjb » Mon Feb 08, 2021 10:56 pm

Code: Select all
 5       6       3      | 1     d89     4      | 2     e78     789   
 4       1       2      | 379    389    789    | 5      68     689   
 9       8       7      | 2      6      5      | 4      3      1     
------------------------+----------------------+---------------------
 2367-1  5       8      | 346    123    12     | 9     f17     47     
 123     24     a14     | 3459   7      1289   | 6      58-1   458   
 167     47      9      | 456    158    18     | 3      2      4578   
------------------------+----------------------+---------------------
c17      3       5      | 8      4      6      | 17     9      2     
 8       279     6      | 579    1259   1279   | 17     4      3     
c127     2479   b14     | 79    c129    3      | 8      56     56     

(1=4)r5c3 - (4=1)r9c3 - (1=9)r79c1,r9c5 - (9=8)r1c5 - (8=7)r1c8 - (7=1)r4c8 => -1 r4c1, r5c8; stte

Phil
Last edited by pjb on Tue Feb 09, 2021 9:48 pm, edited 1 time in total.
pjb
2014 Supporter
 
Posts: 2673
Joined: 11 September 2011
Location: Sydney, Australia

Re: More Pi 12 (SER 8.3)

Postby ghfick » Tue Feb 09, 2021 6:00 pm

Death Blossom : Stem : r6c9, Petals : 4-{r4c89}, 5-{r6c56}, 7-{r4c8}, 8-{r6c6} => r4c56 <> 1 stte
Last edited by ghfick on Tue Feb 09, 2021 6:22 pm, edited 2 times in total.
ghfick
 
Posts: 233
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: More Pi 12 (SER 8.3)

Postby mith » Tue Feb 09, 2021 6:03 pm

ghfick wrote:Death Blossom : Stem : r6c9, Petals : 4-{r4c89}, 5-{r6c56}, 7-{r4c8}, 8-{r6c6} => r4c56 <> 1 stte


This is the simplest thing I saw, I thought it was very pretty. :)
mith
 
Posts: 996
Joined: 14 July 2020


Return to Puzzles