.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 12379 12367 123 ! 123 5 8 ! 4 1369 2369 !
! 12389 123 12358 ! 4 123 6 ! 7 1359 2359 !
! 123 12346 12345 ! 7 9 123 ! 8 1356 2356 !
+----------------------+----------------------+----------------------+
! 123 8 6 ! 1235 1237 4 ! 123 3579 3579 !
! 4 123 7 ! 9 1238 1235 ! 1236 3568 3568 !
! 5 9 123 ! 1238 6 1237 ! 123 3478 3478 !
+----------------------+----------------------+----------------------+
! 6 5 12348 ! 1238 123478 1237 ! 9 3478 3478 !
! 2378 2347 2348 ! 2368 23478 9 ! 5 34678 1 !
! 1378 1347 9 ! 13568 13478 1357 ! 36 2 34678 !
+----------------------+----------------------+----------------------+
221 candidates.
naked-triplets-in-a-block: b1{r1c3 r2c2 r3c1}{n3 n2 n1} ==> r3c3≠3, r3c3≠2, r3c3≠1, r3c2≠3, r3c2≠2, r3c2≠1, r2c3≠3, r2c3≠2, r2c3≠1, r2c1≠3, r2c1≠2, r2c1≠1, r1c2≠3, r1c2≠2, r1c2≠1, r1c1≠3, r1c1≠2, r1c1≠1
As in the previous puzzle (MagicJim), there are two tridagons (with the same digits, and necessarily in the same blocks).
Both of them are used in the resolution path:
- Code: Select all
Trid-OR3-relation for digits 1, 2 and 3 in blocks:
b1, with cells (marked #): r1c3, r2c2, r3c1
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r6c3, r5c2, r4c1
b5, with cells (marked #): r6c4, r5c6, r4c5
with 3 guardians (in cells marked @): n7r4c5 n5r5c6 n8r6c4
+----------------------+----------------------+----------------------+
! 79 67 123# ! 123# 5 8 ! 4 1369 2369 !
! 89 123# 58 ! 4 123# 6 ! 7 1359 2359 !
! 123# 46 45 ! 7 9 123# ! 8 1356 2356 !
+----------------------+----------------------+----------------------+
! 123# 8 6 ! 1235 1237#@ 4 ! 123 3579 3579 !
! 4 123# 7 ! 9 1238 1235#@ ! 1236 3568 3568 !
! 5 9 123# ! 1238#@ 6 1237 ! 123 3478 3478 !
+----------------------+----------------------+----------------------+
! 6 5 12348 ! 1238 123478 1237 ! 9 3478 3478 !
! 2378 2347 2348 ! 2368 23478 9 ! 5 34678 1 !
! 1378 1347 9 ! 13568 13478 1357 ! 36 2 34678 !
+----------------------+----------------------+----------------------+
Trid-OR3-relation for digits 1, 2 and 3 in blocks:
b1, with cells (marked #): r1c3, r2c2, r3c1
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r6c3, r5c2, r4c1
b5, with cells (marked #): r6c6, r5c5, r4c4
with 3 guardians (in cells marked @): n5r4c4 n8r5c5 n7r6c6
+----------------------+----------------------+----------------------+
! 79 67 123# ! 123# 5 8 ! 4 1369 2369 !
! 89 123# 58 ! 4 123# 6 ! 7 1359 2359 !
! 123# 46 45 ! 7 9 123# ! 8 1356 2356 !
+----------------------+----------------------+----------------------+
! 123# 8 6 ! 1235#@ 1237 4 ! 123 3579 3579 !
! 4 123# 7 ! 9 1238#@ 1235 ! 1236 3568 3568 !
! 5 9 123# ! 1238 6 1237#@ ! 123 3478 3478 !
+----------------------+----------------------+----------------------+
! 6 5 12348 ! 1238 123478 1237 ! 9 3478 3478 !
! 2378 2347 2348 ! 2368 23478 9 ! 5 34678 1 !
! 1378 1347 9 ! 13568 13478 1357 ! 36 2 34678 !
+----------------------+----------------------+----------------------+
Trid-OR3-whip[8]: r8n6{c4 c8} - r9n6{c9 c4} - r9n5{c4 c6} - OR3{{n5r5c6 n8r6c4 | n7r4c5}} - b8n7{r7c5 r7c6} - c8n7{r7 r6} - r6n4{c8 c9} - r6n8{c9 .} ==> r8c4≠8Here again, eleven's replacement technique is key to the solution :
- Code: Select all
+----------------------+----------------------+----------------------+
! 79 67 123 ! 123 5 8 ! 4 1369 2369 !
! 89 123 58 ! 4 123 6 ! 7 1359 2359 !
! 123 46 45 ! 7 9 123 ! 8 1356 2356 !
+----------------------+----------------------+----------------------+
! 123 8 6 ! 1235 1237 4 ! 123 3579 3579 !
! 4 123 7 ! 9 1238 1235 ! 1236 3568 3568 !
! 5 9 123 ! 1238 6 1237 ! 123 3478 3478 !
+----------------------+----------------------+----------------------+
! 6 5 12348 ! 1238 123478 1237 ! 9 3478 3478 !
! 2378 2347 2348 ! 236 23478 9 ! 5 34678 1 !
! 1378 1347 9 ! 13568 13478 1357 ! 36 2 34678 !
+----------------------+----------------------+----------------------+
***** STARTING ELEVEN''S REPLACEMENT TECHNIQUE *****
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
Trying in block 4
+-------------------------+-------------------------+-------------------------+
! 79 67 123 ! 123 5 8 ! 4 12369 12369 !
! 89 123 58 ! 4 123 6 ! 7 12359 12359 !
! 123 46 45 ! 7 9 123 ! 8 12356 12356 !
+-------------------------+-------------------------+-------------------------+
! 3 8 6 ! 1235 1237 4 ! 123 123579 123579 !
! 4 2 7 ! 9 1238 1235 ! 1236 123568 123568 !
! 5 9 1 ! 1238 6 1237 ! 123 123478 123478 !
+-------------------------+-------------------------+-------------------------+
! 6 5 12348 ! 1238 123478 1237 ! 9 123478 123478 !
! 12378 12347 12348 ! 1236 123478 9 ! 5 1234678 123 !
! 12378 12347 9 ! 123568 123478 12357 ! 1236 123 1234678 !
+-------------------------+-------------------------+-------------------------+
Trid-OR3-whip[5]: r6c7{n2 n3} - r6c6{n3 n7} - OR3{{n7r4c5 n8r6c4 | n5r5c6}} - r5n3{c6 c5} - b5n8{r5c5 .} ==> r6c4≠2z-chain[3]: r4c7{n1 n2} - b5n2{r4c4 r6c6} - b5n7{r6c6 .} ==> r4c5≠1
Trid-OR3-whip[4]: r6c4{n3 n8} - OR3{{n8r5c5 n7r6c6 | n5r4c4}} - b5n2{r4c4 r4c5} - b5n7{r4c5 .} ==> r6c6≠3naked-pairs-in-a-block: b5{r4c5 r6c6}{n2 n7} ==> r4c4≠2
biv-chain[4]: r9n5{c6 c4} - r4c4{n5 n1} - r4c7{n1 n2} - b5n2{r4c5 r6c6} ==> r9c6≠2
Trid-OR3-whip[5]: r4c7{n1 n2} - r6n2{c9 c6} - OR3{{n7r6c6 n5r4c4 | n8r5c5}} - r6c4{n8 n3} - r6c7{n3 .} ==> r4c4≠1singles ==> r4c4=5, r9c6=5
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 79 67 23 ! 123 5 8 ! 4 12369 12369 !
! 89 13 58 ! 4 123 6 ! 7 12359 12359 !
! 12 46 45 ! 7 9 123 ! 8 12356 12356 !
+-------------------------+-------------------------+-------------------------+
! 3 8 6 ! 5 27 4 ! 12 1279 1279 !
! 4 2 7 ! 9 138 13 ! 136 13568 13568 !
! 5 9 1 ! 38 6 27 ! 23 23478 23478 !
+-------------------------+-------------------------+-------------------------+
! 6 5 2348 ! 1238 123478 1237 ! 9 123478 123478 !
! 1278 1347 2348 ! 1236 123478 9 ! 5 1234678 123 !
! 1278 1347 9 ! 12368 123478 5 ! 1236 123 1234678 !
+-------------------------+-------------------------+-------------------------+
At least one candidate of a previous Trid-OR3-relation between candidates n7r4c5 n5r5c6 n8r6c4 has just been eliminated.
There remains a Trid-OR2-relation between candidates: n7r4c5 n8r6c4
whip[1]: r4n1{c9 .} ==> r5c7≠1, r5c8≠1, r5c9≠1
Trid-OR2-whip[3]: OR2{{n8r6c4 | n7r4c5}} - b5n2{r4c5 r6c6} - r6c7{n2 .} ==> r6c4≠3The end is in W9, with nothing noticeable:
- Code: Select all
naked-single ==> r6c4=8
whip[1]: r6n3{c9 .} ==> r5c9≠3, r5c8≠3, r5c7≠3
naked-single ==> r5c7=6
naked-triplets-in-a-block: b9{r8c9 r9c7 r9c8}{n2 n1 n3} ==> r9c9≠3, r9c9≠2, r9c9≠1, r8c8≠3, r8c8≠2, r8c8≠1, r7c9≠3, r7c9≠2, r7c9≠1, r7c8≠3, r7c8≠2, r7c8≠1
whip[1]: r7n1{c4 .} ==> r8c4≠1, r8c5≠1, r9c4≠1, r9c5≠1
whip[5]: c4n3{r9 r1} - r1c3{n3 n2} - r3c1{n2 n1} - b2n1{r3c6 r2c5} - r5c5{n1 .} ==> r8c5≠3
whip[5]: c4n3{r9 r1} - r1c3{n3 n2} - r3c1{n2 n1} - b2n1{r3c6 r2c5} - r5c5{n1 .} ==> r7c5≠3
whip[4]: c4n2{r9 r1} - r1c3{n2 n3} - r7n3{c3 c4} - c4n1{r7 .} ==> r7c6≠2
whip[5]: c4n3{r9 r1} - c4n1{r1 r7} - r7n3{c4 c3} - r7n2{c3 c5} - c4n2{r7 .} ==> r9c5≠3
whip[5]: r5c6{n1 n3} - r3c6{n3 n2} - b1n2{r3c1 r1c3} - b1n3{r1c3 r2c2} - c5n3{r2 .} ==> r7c6≠1
z-chain[5]: c5n3{r5 r2} - b1n3{r2c2 r1c3} - r7n3{c3 c4} - r7n1{c4 c5} - r5c5{n1 .} ==> r5c6≠3
singles ==> r5c6=1, r5c5=3
biv-chain[3]: r2c5{n2 n1} - r2c2{n1 n3} - r1c3{n3 n2} ==> r1c4≠2
whip[1]: c4n2{r9 .} ==> r8c5≠2, r7c5≠2, r9c5≠2
biv-chain[3]: r1c3{n3 n2} - r7n2{c3 c4} - c4n1{r7 r1} ==> r1c4≠3
singles ==> r1c4=1, r2c5=2, r3c6=3, r7c6=7, r6c6=2, r6c7=3, r4c5=7, r7c5=1
naked-pairs-in-a-block: b9{r7c8 r7c9}{n4 n8} ==> r9c9≠8, r9c9≠4, r8c8≠8, r8c8≠4
whip[1]: b9n4{r7c8 .} ==> r7c3≠4
whip[1]: b9n8{r7c8 .} ==> r7c3≠8
naked-pairs-in-a-column: c3{r1 r7}{n2 n3} ==> r8c3≠3, r8c3≠2
naked-pairs-in-a-row: r8{c3 c5}{n4 n8} ==> r8c2≠4, r8c1≠8
whip[9]: r9c7{n2 n1} - r9c8{n1 n3} - r9c4{n3 n6} - r9c9{n6 n7} - r9c2{n7 n4} - r3c2{n4 n6} - c9n6{r3 r1} - r1n3{c9 c3} - c3n2{r1 .} ==> r9c1≠2
whip[9]: c1n2{r8 r3} - b3n2{r3c8 r1c8} - r9n2{c8 c4} - r9n6{c4 c9} - b3n6{r3c9 r3c8} - r3n1{c8 c9} - r4c9{n1 n9} - r1c9{n9 n3} - r1c3{n3 .} ==> r8c9≠2
whip[1]: b9n2{r9c8 .} ==> r9c4≠2
whip[5]: r8n6{c8 c4} - r9c4{n6 n3} - r7n3{c4 c3} - r1n3{c3 c9} - r8n3{c9 .} ==> r1c8≠6
biv-chain[3]: b1n7{r1c1 r1c2} - r1n6{c2 c9} - r9c9{n6 n7} ==> r9c1≠7
whip[5]: r2n5{c8 c3} - c3n8{r2 r8} - r9c1{n8 n1} - b9n1{r9c7 r8c9} - r3n1{c9 .} ==> r3c8≠5
whip[4]: r3c1{n1 n2} - r8n2{c1 c4} - r8n6{c4 c8} - r3c8{n6 .} ==> r3c9≠1
whip[5]: r2c2{n3 n1} - r3n1{c1 c8} - r9c8{n1 n2} - r4c8{n2 n9} - r1c8{n9 .} ==> r2c8≠3
finned-x-wing-in-columns: n3{c8 c3}{r1 r9} ==> r9c2≠3
biv-chain[3]: b1n1{r3c1 r2c2} - r2n3{c2 c9} - r8c9{n3 n1} ==> r8c1≠1
biv-chain[4]: r2n3{c9 c2} - b1n1{r2c2 r3c1} - r9c1{n1 n8} - r2c1{n8 n9} ==> r2c9≠9
biv-chain[4]: r1n6{c9 c2} - r1n7{c2 c1} - r8c1{n7 n2} - b1n2{r3c1 r1c3} ==> r1c9≠2
biv-chain[4]: c1n7{r1 r8} - c1n2{r8 r3} - c9n2{r3 r4} - c9n9{r4 r1} ==> r1c1≠9
singles ==> r1c1=7, r1c2=6, r3c2=4, r3c3=5, r2c3=8, r2c1=9, r8c3=4, r8c5=8, r9c5=4, r8c1=2, r3c1=1, r2c2=3, r1c3=2, r9c1=8, r7c3=3, r7c4=2
biv-chain[4]: c7n1{r4 r9} - r8c9{n1 n3} - r1n3{c9 c8} - c8n9{r1 r4} ==> r4c8≠1
biv-chain[5]: c8n6{r3 r8} - r9n6{c9 c4} - r9n3{c4 c8} - r1c8{n3 n9} - r4c8{n9 n2} ==> r3c8≠2
stte