- Code: Select all
6 3 4 | 7 . . | . 1 .
9 5 1 | . 6 . | . 7 .
8 2 7 | 1 . . | . . 4
-------+-------+------
. 1 . | 6 . 7 | . 5 9
. 6 . | 2 . 9 | . . .
7 9 . | 8 . . | . 2 6
-------+-------+------
1 4 . | . . 6 | . 8 .
. 8 . | . 7 1 | . 9 2
. 7 . | . . . | 3 . 1
- Code: Select all
6 3 4 | 7 2589 258 | 2589 1 58
9 5 1 | 34 6 2348 | 28 7 38
8 2 7 | 1 359 35 | 569 36 4
-------------------+-------------------+-------------------
234 1 238 | 6 34 7 | 48 5 9
45 6 58 | 2 145 9 | 1478 34 378
7 9 35 | 8 1345 345 | 14 2 6
-------------------+-------------------+-------------------
1 4 239 | 39 23 6 | 57 8 57
35 8 356 | 345 7 1 | 46 9 2
25 7 2569 | 459 248 248 | 3 46 1
No simple forcing chain exists using only the 2-candidate cells -- right?
I tried to form a chain between the first two 2-candidate cells in the puzzle using one cell that had more than 2 candidates:
r2c4=3 -> r3c6=5
r2c4=4 -> r8c5<>4 -> r8c7=4 -> r9c8=6 -> r3c8=3 -> r3c6=5
Therefore, r3c6=5
Changing the last link in the chain makes another elimination:
r2c4=3 -> r2c9=8
r2c4=4 -> r8c5<>4 -> r8c7=4 -> r9c8=6 -> r3c8=3 -> r2c9=8
Therefore, r2c9=8
(The second pair of chains alone all that is needed to reduce the rest of the solution to naked singles.)
Here are just the cells involved for clarity:
- Code: Select all
. . . | . . . | . . .
. . . | 34 . . | . . 38
. . . | . . 35 | . 36 .
---------------+---------------+---------------
. . . | . . . | . . .
. . . | . . . | . . .
. . . | . . . | . . .
---------------+---------------+---------------
. . . | . . . | . . .
. . . | 345 . . | 46 . . <-- only two cells can contain a '4' in this row.
. . . | . . . | . 46 .
My questions:
1) Do we have a special name for these types of mixed forcing chain?
2) Could labeling edges be used somehow to find this type of chain?
3) Anyone see a better "next step"?