Tentative resolution. Not found any trick after step 3. No hard step, but a long path...
- Code: Select all
+-------------------------+------------------------+------------------------+
| 12569 12356 39 | 4 2569# 23569 | 7 8 269# |
| 4 2568 789 | 1 78 2569# | 269# 2569 3 |
| 2569 23568 3789 | 2569# 78 23569 | 1 2569# 4 |
+-------------------------+------------------------+------------------------+
| 269 4 1 | 3 269# 7 | 8 269# 5 |
| 2679 267-3 5 | 269# 1 8 | 34-269 34-269 269# |
| 269 2368 389 | 2569 4 2569# | 269-3# 1 7 |
+-------------------------+------------------------+------------------------+
| 3 17 4 | 269 269 1269 | 5 2679 8 |
| 157 9 6 | 8 25 4-125 | 234 2347 12 |
| 8 15 2 | 7 3 14569 | 469 469 169 |
+-------------------------+------------------------+------------------------+
1. (7)r5c2 = r5c1 - r8c1 = (7-3)r8c8 = (3)r5c8 => -3 r5c2; HP(34)r5c78, -3 r6c7
2. UR(34)r58c78 having a single external guardian => +4 r8c6
3. TH(269)b2356 (#) having five guardians:
(5)r1c5 - r8c5 = (51)r18c1
(5)r3c48 - r3c1 = (51)r18c1
(5)r6c6 - r6c4 = r3c4 - r3c1 = (51)r18c1
(5)r2c6 - r1c56 = (51)r18c1
=> +15 r18c1; 8 placements
- Code: Select all
+-----------------------+------------------------+---------------------+
| 15 12356 39 | 4 2569 23569 | 7 8 269 |
| 4 2568 789 | 1 78 2569 | 269 2569 3 |
| 26 23568 3789 | 2569 78 23569 | 1 2569 4 |
+-----------------------+------------------------+---------------------+
| 269 4 1 | 3 269 7 | 8 269 5 |
| 7 26 5 | 269 1 8 | 4 3 269 |
| 269 38 38 | 2569 4 2569 | 269 1 7 |
+-----------------------+------------------------+---------------------+
| 3 7 4 | 269 269 1 | 5 269 8 |
| 15 9 6 | 8 25 4 | 3 7 12 |
| 8 15 2 | 7 3 569 | 69 4 169 |
+-----------------------+------------------------+---------------------+
4. UR(38)r36c23 using externals (3)r3c6 == (87)r3c35 => -3 r3c3
5. UR(78)r23c35 using single external => +8 r6c3; 4 placements
6. X-Wing (5)c15\r18 => -5 r1c26
7. Group kite (9)r5c4 = r5c9 - r1c9 = r1c56 => -9 r3c4
8. (6=2)r3c1 - r4c1 = (r4c5|r4c8) - (r8c5&r7c8) = (2-1)r8c9 = r8c1 - r1c1 = (1)r1c2 => -6 r1c2
9. W-Wing: (2=1)r1c2 - r9c2 = r9c9 - (1=2)r8c9 => -2 r1c9
10. [(6)r1c56 = r1c9 - r5c9 = r5c4] = r5c2 - r46c1 = r3c1 => -6 r3c4
- Code: Select all
+--------------------+-----------------------+---------------------+
| 15 12 3 | 4 2569 269 | 7 8 69 |
| 4 2568 79 | 1 78 2569 | 269 2569 3 |
| 26 2568 79 | 25 78 3 | 1 2569 4 |
+--------------------+-----------------------+---------------------+
| 269 4 1 | 3 269 7 | 8 269 5 |
| 7 26 5 | 269 1 8 | 4 3 269 |
| 269 3 8 | 2569 4 2569 | 269 1 7 |
+--------------------+-----------------------+---------------------+
| 3 7 4 | 269 269 1 | 5 269 8 |
| 15 9 6 | 8 25 4 | 3 7 12 |
| 8 15 2 | 7 3 569 | 69 4 169 |
+--------------------+-----------------------+---------------------+
11. (6)r2c6 = r1c56 - (6=9)r1c9 - r1c56 = (9)r2c6 => -25 r2c6
12. (2)r6c6 = r12c6 - (2=5)r3c4 - r6c4 = (5)r6c6 => -69 r6c6, -2 r1c5
13. (6=2)r3c1 - r1c2 = (2-6|9)r1c6 = (69)r29c6 - (6)r1c56&r7c45 = (6)r1c9|r7c8 => -6 r3c8
14. (6=2)r3c1 - *r1c2 = (2-6|9)r1c6 = (69)r29c6 - (9)r1c56&r7c45 = (9)r1c9|r7c8 - (9=526)r3c148 =>-2 r3c2*, -6 r3c2; lcls, 2 placements
15. X-Chain (2)r6c6 = r1c6 - r3c4 = r3c8 - r2c7 = r6c7 => -2 r6c1; lcls, 2 placements
16. Kraken cell (569)r9c6
||(5)r9c6 - (5=2)r8c5 - r8c9 = (2-9)r5c9 = (9)r5c4
||(6)r9c6 - r2c6 = r1c56 - (6=9)r1c9 - r5c9 = (9)r5c4
||(9)r9c6 - r12c6 = (9)r1c5
= >-9 r4c5; ste