There exist preliminary AIC's, killing one of the tridagon guardians.
- Code: Select all
+---------------------+----------------------------+-------------------------+
| 123* 7 9 | 123* 4 8 | 1235 6 35 |
| 6 123* 4 | 5 123* 9 | c12378 1238 Cd378 |
| 8 5 123* | 6 7 E123* | 1239 4 39 |
+---------------------+----------------------------+-------------------------+
| 123* 4 6 | 12379 8 E123(-7)*| 123579 1235 D3579 |
| 5 123* 8 |ha479-123 g123+9* ha47-123 |hb12379 123 6 |
| 7 9 123* | 123* 6 5 | 1238 1238 4 |
+---------------------+----------------------------+-------------------------+
| 9 6 1235 |Af1238 Af123 EAf123 | 4 7 Be358 |
| 134 138 1357 | 134789 f139 467-13 | 3568 358 2 |
| 234 238 237 | 23478 5 467-23 | 368 9 1 |
+---------------------+----------------------------+-------------------------+
1. (47)r5c46 = r5c7 - r2c7 = (7-8)r2c9 = r7c9 - (8=1239)b8p1235 - r5c5 = (947)r5c467 => -123 r5c46
2. (123=8)r7c456 - r7c9 = (8-7)r2c9 = r4c9 - (7=123)r347c6 => -123 r89c6; NT(467)r589c6, -7 r4c6
3. Tridagon (123)b1245, having now a single guardian => +9 r5c5 AND Remote Triple (123)r2c25, r5c2; lcls, 10 placements
I don't repeat the RT demo. It has been brilliantly exposed by marek stefanik
hereEDIT - alternatively, straightforward processing of the tridagon pattern results in the same resolution state:
Tridagon (123)b1245, having two guardians => 7r4c6 = 9r5c5
1. (9)r5c5 == (7)r4c6 - r5c46 = (7-9)r5c7 = (9)r5c45 => -9 r4c4
2. (7)r4c6 == (9)r5c5 - (9=1238)b8p1235 - r7c9 = (87)r24c9 => -7 r4c4; lcls, 10 placements AND RT (123)r2c25, r5c2
- Code: Select all
+--------------------+--------------------+---------------------+
| 123 7 9 | 123 4 8 | d1235 6 35 |
| 6 b123* 4 | 5 b123* 9 | 7 c123 8 |
| 8 5 123 | 6 7 123 | d123 4 9 |
+--------------------+--------------------+---------------------+
| 123 4 6 | 123 8 123 | 9 5 7 |
| 5 a123* 8 | 47 9 47 | 3-12 123 6 |
| 7 9 123 | 123 6 5 | 1238 1238 4 |
+--------------------+--------------------+---------------------+
| 9 6 135 | 8 123 123 | 4 7 35 |
| 4 138 57 | 9 13 67 | 56 38 2 |
| 23 238 237 | 47 5 467 | 368 9 1 |
+--------------------+--------------------+---------------------+
4. (1,2)r5c2 =RT= r2c25 - r2c8 = r13c7 => -12 r5c7; lcls, 1 placement
- Code: Select all
+--------------------+--------------------+-------------------+
| 123 7 9 | 123 4 8 | a125 6 35 |
| 6 b123 4 | 5 123 9 | 7 a123 8 |
| 8 5 123 | 6 7 123 | a12 4 9 |
+--------------------+--------------------+-------------------+
| 123 4 6 | 123 8 123 | 9 5 7 |
| 5 12 8 | 47* 9 47* | 3 12 6 |
| 7 9 123 | 123 6 5 | 128 128 4 |
+--------------------+--------------------+-------------------+
| 9 6 15 | 8 123 123 | 4 7 35 |
| 4 18 57 | 9 13 67 | d6-5 38 2 |
| 23 c238 237 | 47* 5 47+6* | c68 9 1 |
+--------------------+--------------------+-------------------+
4. UR(47)r59c46, using single internal => +6 r8c6; 17 placements
or same resolution state with an AIC: 4. (5=123)b3p157 - r2c2 = (38-6)r9c27 = (6)r8c7 => -5 r8c7; same 17 placements
- Code: Select all
+-------------------+-------------------+-----------------+
| 12* 7 9 | 12* 4 8 | 5 6 3 |
| 6 123 4 | 5 23 9 | 7 12 8 |
| 8 5 23 | 6 7 123* | 12 4 9 |
+-------------------+-------------------+-----------------+
| 23-1 4 6 | 123 8 123* | 9 5 7 |
| 5 12 8 | 7 9 4 | 3 12 6 |
| 7 9 23 | 123 6 5 | 12 8 4 |
+-------------------+-------------------+-----------------+
| 9 6 1 | 8 23 23 | 4 7 5 |
| 4 8 5 | 9 1 7 | 6 3 2 |
| 23 23 7 | 4 5 6 | 8 9 1 |
+-------------------+-------------------+-----------------+
5. Kite (1)r1c1 = r1c4 - r3c6 = r4c6 => -1 r4c1; ste