Each Sudoku Solution Grid can be represented as union of 9 1-templates, where each 1-template is the set of the 9 cells occupied by the same digit.
Each unordered pair of 1-templates forms a 2-template. There are 36 of them: (1,2), (1,3) ... (1,9), (2,3) ... (8,9).
Each unordered triplet of 1-templates forms a 3-template. There are 84 of them: (1,2,3) ... (7,8,9).
Each unordered quartet of 1-templates forms a 4-template. There are 126 of them: (1,2,3,4) ... (6,7,8,9).
The complementary cells of each 4-template form a 5-template.
The complementary cells of each 3, 2, and 1-template form respectively a 6, 7, and 8-template.
The grid itself is a 9-template. For completeness.
The grid can be represented also by union of three 2-templates plus one 3-template. There are 1260 choices to do this, one of them is [(1,2), (3,4), (5,6), (7, 8, 9)].
The grid can be represented as union of three 3-templates. There are 280 ways to do this, one of them is [(1, 2, 3), (4, 5, 6), (7, 8, 9).
Each k-template requires a minimum number of clues to be completed. Imagine a grid, where all cells except these from the template are known. The minimum number of the givens, along with their exact position, could be preprocessed. See
this table for some details.
Inspecting all possible combinations for 2+2+2+3, 3+3+3, and 4+5 templates for a fixed grid, and taking the worst one (that requires maximum number of clues to complete the respective combination of k-templates) gives a lower limit of clues, required to complete the whole grid. It is sufficient to sum the minimum clues for each of the templates within the combination, looping over all template combinations.
This was done for the grids with 17-clue and 39-clue puzzles.
In addition, the minimal and average clues for each of the methods are calculated.
- Code: Select all
Grids having 17-clue puzzles
----------------------------
Some of the extreme grids Min2223 Max2223 Avg2223 Min333 Max333 Avg333 Min45 Max45 Avg45 Puzzles
123456789456789123789123465234617958597348612861295374348571296675932841912864537 5 13 7.262 6 15 8.036 8 14 10.77 1
123456789456789123789123465234915678567348912891672354348261597672594831915837246 5 12 6.357 6 15 7.071 8 13 10.12 1
123456789456789123789123564234975618567318942891642375378291456642537891915864237 5 13 6.536 6 15 7.357 8 13 10.40 1
123456789456789123789132465217594638635821974948367251394675812571248396862913547 5 14 7.298 6 15 8.143 9 14 10.89 1
123456789456789123798132564267345918534918276981267435375691842619824357842573691 5 9 5.524 6 8 6.321 8 11 9.32 1
123456789456789123798231645265943871871625934934178562319864257582317496647592318 5 8 5.738 6 8 6.714 8 10 9.59 1
123456789456789123798231645275148936639527418814963257347892561561374892982615374 5 6 5.095 6 8 6.286 8 10 9.12 3
123456789456789132789132564271564893635897421948213675314978256567321948892645317 5 13 6.893 6 15 7.679 8 13 10.44 1
123456789456789132789231546295374861347618295618592374531967428862143957974825613 5 8 5.917 6 8 6.750 8 11 9.63 1
123456789457189236689327514215694378746835192938271465392748651571962843864513927 5 15 7.940 6 13 8.821 8 15 11.61 1
123456789457189236698237541261394857584671923739528164315762498876945312942813675 6 12 7.738 7 11 8.464 9 13 10.58 1
123456789457189236698723145249618357316275498785394612564937821872541963931862574 5 15 7.869 6 12 8.607 8 16 11.39 1
123456789457189263689327541216594378394278615578613492745831926862945137931762854 5 13 8.345 6 13 9.036 9 13 11.16 1
... rest grids with 17s ...
============================================================================================================================================================
Min 5 6 5.095 6 8 6.286 8 10 9.12 1
Max 6 15 8.345 7 15 9.036 10 16 11.61 29
Average 5.000 10.862 6.782 6.000 10.485 7.552 8.292 12.166 10.18 1.062
Grids having 39-clue puzzles
----------------------------
Min 5 9 6.393 6 9 7.214 8 11 9.98
Max 5 15 8.250 6 13 9.000 9 16 11.61
Average 5 12.074 7.360 6 11.254 8.093 8.576 13.093 10.68
For 17s, the SFB grid holds all records for minimums.
Interesting phenomena for the 17s is that the average over all grids for method Max2223 (10.862) is higher than average for method Max333 (10.485). This suggests lack of 2-digit UA sets. Maybe the fully-entwined pairs approach isn't worthless?
MD