- Code: Select all
*-----------*
|..2|9..|...|
|8..|...|94.|
|..7|...|.6.|
|---+---+---|
|.71|8.3|..5|
|...|...|.3.|
|..6|...|..2|
|---+---+---|
|.38|.96|4..|
|...|..1|...|
|79.|...|5..|
*-----------*
Play/Print this puzzle online
*-----------*
|..2|9..|...|
|8..|...|94.|
|..7|...|.6.|
|---+---+---|
|.71|8.3|..5|
|...|...|.3.|
|..6|...|..2|
|---+---+---|
|.38|.96|4..|
|...|..1|...|
|79.|...|5..|
*-----------*
*--------------------------------------------------------------*
|a46 1 2 | 9 368 b48 | 7 5 38 |
| 8 5-6 3 | 267 267 257 | 9 4 1 |
| 9 45 7 |e13 138 45 | 2 6 38 |
|--------------------+--------------------+--------------------|
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 h28 9 | 1267 1267 27 | 18 3 4 |
| 3 g48 6 |f14 5 9 | 18 7 2 |
|--------------------+--------------------+--------------------|
| 1 3 8 | 5 9 6 | 4 2 7 |
| 2-6 i26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 |d23 238 c28 | 5 1 6 |
*--------------------------------------------------------------*
+--------------+------------------+-----------+
| 6-4 1 2 | 9 368 (48) | 7 5 38 |
| 8 56 3 | 267 267 257 | 9 4 1 |
| 9 5(4) 7 | (13) 138 5-4 | 2 6 38 |
+--------------+------------------+-----------+
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 28 9 | 1267 1267 27 | 18 3 4 |
| 3 8(4) 6 | (14) 5 9 | 18 7 2 |
+--------------+------------------+-----------+
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 | (23) 238 (28) | 5 1 6 |
+--------------+------------------+-----------+
+---------------+-------------------+-----------+
| 6(4) 1 2 | 9 368 (48) | 7 5 38 |
| 8 56 3 | 267 267 257 | 9 4 1 |
| 9 5(4) 7 | (13) 138 45 | 2 6 38 |
+---------------+-------------------+-----------+
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 28 9 | 1267 1267 27 | 18 3 4 |
| 3 8(4) 6 | (14) 5 9 | 18 7 2 |
+---------------+-------------------+-----------+
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 | (23) 238 -2(8) | 5 1 6 |
+---------------+-------------------+-----------+
*-----------------------------------------------------------*
| 46 1 2 | 9 368 b48 | 7 5 38 |
| 8 56 3 | 267 267 257 | 9 4 1 |
| 9 a45 7 |c13 138 b45 | 2 6 38 |
|-------------------+-------------------+-------------------|
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 28 9 | 1267 1267 27 | 18 3 4 |
| 3 8-4 6 |c14 5 9 | 18 7 2 |
|-------------------+-------------------+-------------------|
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 |c23 238 b28 | 5 1 6 |
*-----------------------------------------------------------*
als xy-wing
(4=5)r3c2-(5=2)r139c6-(2=4)r369c4 => -4r6c2; ste
JC Van Hay wrote:Obsevations : The set of unsolved cells in B13467+R46 has only 2 solutions as it contains only bivalues.
Analysis : r1c1=4->r9c46=2, while r1c1=6->r9c6=8 and ste :=> 4r1c1 or 2r9c6 is false.
Interpretation :Chain[6] : (4=82)r19c6-(2=314)r936c4-4r6c2=4r3c2 :=> -4r1c1.r3c6;ste
- Code: Select all
+--------------+------------------+-----------+
| 6-4 1 2 | 9 368 (48) | 7 5 38 |
| 8 56 3 | 267 267 257 | 9 4 1 |
| 9 5(4) 7 | (13) 138 5-4 | 2 6 38 |
+--------------+------------------+-----------+
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 28 9 | 1267 1267 27 | 18 3 4 |
| 3 8(4) 6 | (14) 5 9 | 18 7 2 |
+--------------+------------------+-----------+
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 | (23) 238 (28) | 5 1 6 |
+--------------+------------------+-----------+
orChain[6] : 8r9c6=(8-4)r1c6=4r1c1-4r3c2=4r6c2-(4=132)r639c4 :=> -2r9c6;ste
- Code: Select all
+---------------+-------------------+-----------+
| 6(4) 1 2 | 9 368 (48) | 7 5 38 |
| 8 56 3 | 267 267 257 | 9 4 1 |
| 9 5(4) 7 | (13) 138 45 | 2 6 38 |
+---------------+-------------------+-----------+
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 28 9 | 1267 1267 27 | 18 3 4 |
| 3 8(4) 6 | (14) 5 9 | 18 7 2 |
+---------------+-------------------+-----------+
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 | (23) 238 -2(8) | 5 1 6 |
+---------------+-------------------+-----------+
r1c1=4 and [b1467]+[r46] resolved ... [b3] extraneous
*--------------------------------------------------*
| 4 1 2 | 9 368 8 | 7 5 38 |
| 8 6 3 | 27 27 257 | 9 4 1 |
| 9 5 7 | 3 138 4 | 2 6 38 |
|----------------+----------------+----------------|
| 2 7 1 | 8 4 3 | 6 9 5 |
| 5 8 9 | 267 267 27 | 1 3 4 |
| 3 4 6 | 1 5 9 | 8 7 2 |
|----------------+----------------+----------------|
| 1 3 8 | 5 9 6 | 4 2 7 |
| 6 2 5 | 47 7 1 | 3 8 9 |
| 7 9 4 | 23 238 28 | 5 1 6 |
*--------------------------------------------------*
r1c1=6 and [b1467]+[r46] resolved ... [b3] extraneous
*--------------------------------------------------*
| 6 1 2 | 9 38 48 | 7 5 38 |
| 8 5 3 | 267 67 27 | 9 4 1 |
| 9 4 7 | 13 138 5 | 2 6 38 |
|----------------+----------------+----------------|
| 4 7 1 | 8 2 3 | 6 9 5 |
| 5 2 9 | 167 167 7 | 8 3 4 |
| 3 8 6 | 4 5 9 | 1 7 2 |
|----------------+----------------+----------------|
| 1 3 8 | 5 9 6 | 4 2 7 |
| 2 6 5 | 7 47 1 | 3 8 9 |
| 7 9 4 | 23 38 28 | 5 1 6 |
*--------------------------------------------------*
(1=4)r6c4 - (4=2)r4c5 = (2=4)r4c1 - (4=6)r1c1 - (6)r1c5 =UR= (1)r3c5 => r3c4,r5c5<>1
+---------+---------------+---------+
| 46 1 2 | 9 368 48 | 7 5 38 |
| 8 56 3 | 267 267 257 | 9 4 1 |
| 9 45 7 | 13 138 45 | 2 6 38 |
+---------+---------------+---------+
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 28 9 | 1267 1267 27 | 18 3 4 |
| 3 48 6 | 14 5 9 | 18 7 2 |
+---------+---------------+---------+
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 | 23 238 28 | 5 1 6 |
+---------+---------------+---------+
Marty R. wrote:
- Code: Select all
+---------+---------------+---------+
| 46 1 2 | 9 368 48 | 7 5 38 |
| 8 56 3 | 267 267 257 | 9 4 1 |
| 9 45 7 | 13 138 45 | 2 6 38 |
+---------+---------------+---------+
| 24 7 1 | 8 24 3 | 6 9 5 |
| 5 28 9 | 1267 1267 27 | 18 3 4 |
| 3 48 6 | 14 5 9 | 18 7 2 |
+---------+---------------+---------+
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 47 1 | 3 8 9 |
| 7 9 4 | 23 238 28 | 5 1 6 |
+---------+---------------+---------+
Type 3 UR 38 r13c59 external analysis c5: (3=8)r9c5
R9c5=3-(3=2)r9c4-(2=8)r9c6-(8=4)r1c6-r1c1=r3c2-(4=8)r6c2
R9c5=8-(8=2)r9c6-(2=3)r9c4-(3=1)r3c4-(1=4)r6c4-(4=8)r6c2=>r6c2=8
Is there a way to notate this in one string?
r9c5=3-(3=2)r9c4-(2=8)r9c6-(8=4)r1c6-r1c1=r3c2-(4=8)r6c2
r9c5=8-(8=2)r9c6-(2=3)r9c4-(3=1)r3c4-(1=4)r6c4-(4=8)r6c2=>r6c2=8
(8=4)r6c2-r3c2=r1c1-(4=8)r1c6-(8=2)r9c6-(2=3)r9c4-(3)r9c5
(8)r9c5-(8=2)r9c6-(2=3)r9c4-(3=1)r3c4-(1=4)r6c4-(4=8)r6c2=>r6c2=8
(8=4)r6c2-r3c2=r1c1-(4=8)r1c6-(8=2)r9c6-(2=3)r9c4-(3=ext_UR=8)r9c5 ...
-(8=2)r9c6-(2=3)r9c4-(3=1)r3c4-(1=4)r6c4-(4=8)r6c2 => r6c2=8
*--------------------------------------------------------------*
|a46 1 2 | 9 38-6 48 | 7 5 38 |
| 8 56 3 | 267 c267 257 | 9 4 1 |
| 9 45 7 | 13 138 45 | 2 6 38 |
|--------------------+--------------------+--------------------|
|a24 7 1 | 8 c24 3 | 6 9 5 |
| 5 b28 9 | 1267 c1267 27 |b18 3 4 |
| 3 48 6 | 14 5 9 | 18 7 2 |
|--------------------+--------------------+--------------------|
| 1 3 8 | 5 9 6 | 4 2 7 |
| 26 26 5 | 47 c47 1 | 3 8 9 |
| 7 9 4 | 23 238 28 | 5 1 6 |
*--------------------------------------------------------------*
Danny, sorry if my comments confused you.daj95376 wrote: How does your observation have anything to do with either of your solutions since they both need two bivalue cells in [b2] that aren't in your observation set.
JC Van Hay wrote:Danny, sorry if my comments confused you.
The observation only gives me the best starting point of an analysis of the puzzle in order to find the next best elimination.
Therefore, the solutions are not interpretations of the observation, but of the subsequent analysis.
So you did to find your "equivalent chain"!
To be noted in your two diagrams : in the first (r1c1=4), 3r3c4->r9c4=2! and 8r4c6->r9c6=2! while in the second (r1c1=6), r1c6=8->r9c6=8.