I think
999_Springs correctly determined your position with the added 7. Here's a very short solution path using some basic strategies:
- Code: Select all
.------------------.---------------.-----------------.
| 5 24 124 | 8 6 7 | 9 3 #12 |
| 128 7 128 | 9 3 15 | 6 4 #125 |
| 6 9 3 |*14 2 145 | 8 #17 #157 |
:--------------------+--------------+----------------:
| 7 58 189 | 3 4 2 | 15 6 189 |
| 23 235 29 | 6 1 8 | 257 279 4 |
| 1248 6 1248 | 7 5 9 | 12 128 3 |
:------------------+----------------+----------------:
| 2389 238 6 |*12 7 13 | 4 5 -189 |
| 2348 1 5 | 24 9 6 | 237 278 78 |
| 2349 234 7 | 5 8 -134 | 123 129 6 |
'------------------'----------------'-----------------
Empty rectangle (above).
Then a short discontinuous nice loop: [r8c7]=3=[r8c1]=4=[r8c4]-4-[r9c6]-3-[r9c7]=3=[r8c7]==>[r8c7]=3.
This will get you to here:
- Code: Select all
*--------------------------------------------------*
| 5 24 124 | 8 6 7 | 9 3 12 |
| 12 7 8 | 9 3 15 | 6 4 125 |
| 6 9 3 | 14 2 145 | 8 17 157 |
|----------------+----------------+----------------|
| 7 8 19 | 3 4 2 | 5 6 19 |
| 3 5 29 | 6 1 8 | 7 29 4 |
| 124 6 124 | 7 5 9 | 12 8 3 |
|----------------+----------------+----------------|
| 89 23 6 | 12 7 13 | 4 5 89 |
| 248 1 5 | 24 9 6 | 3 27 78 |
| 249 234 7 | 5 8 34 | 12 129 6 |
*--------------------------------------------------*
X-wing on 1 [r14c39], and a XY-wing: 17[r3c8], 27[r8c8], 12[r9c7].
Singles, and nary a guess.