May 29, 2020

Post puzzles for others to solve here.

May 29, 2020

Postby tarek » Fri May 29, 2020 9:16 pm

Code: Select all
+-------+-------+-------+
| 8 . . | . 1 . | . . 4 |
| . 1 . | 7 . 9 | . . . |
| . . . | . 4 2 | 3 . . |
+-------+-------+-------+
| 3 . . | . 5 . | 8 4 . |
| . . 7 | . . 8 | 1 . 3 |
| 2 . . | 3 . . | . 6 . |
+-------+-------+-------+
| . 2 . | . 9 . | . . . |
| . . 9 | . . . | . 5 . |
| . . . | 1 . 6 | . . 9 |
+-------+-------+-------+
8...1...4.1.7.9.......423..3...5.84...7..81.32..3...6..2..9......9....5....1.6..9

Play this puzzle online

Download Sukaku Explainer
User avatar
tarek
 
Posts: 3762
Joined: 05 January 2006

Re: May 29, 2020

Postby SpAce » Sat May 30, 2020 12:28 am

Code: Select all
.--------------------------.-----------.--------------------.
|     8       37    23     | 6  1   5  |  27     9      4   |
| abd[4](6)   1     24     | 7  3   9  |  5      8     c26  |
|     9       67    5      | 8  4   2  |  3      17     16  |
:--------------------------+-----------+--------------------:
|     3       9     6      | 2  5   1  |  8      4      7   |
|     5-4   h(4)5   7      | 9  6   8  |  1      2      3   |
|     2       8     1      | 3  7   4  |  9      6      5   |
:--------------------------+-----------+--------------------:
|    e1467    2    b348    | 5  9   37 | f467    137   c18  |
|   a[1]7-6   36    9      | 4  28  37 |  267    5    bc128 |
|     57-4   g45   a3[8]-4 | 1  28  6  | f2(4)7  37     9   |
'--------------------------'-----------'--------------------'

(148)r82c1,r9c3 = 1r8c9|6r2c1|8r7c3 - (286)r872c9 = (6)r2c1@ - r7c1 = (64)r79c7@ - r9c2 = (4)r5c2 => -4 r59c1,r9c3, -6 r8c1; stte

9x9 BTM: Show
Code: Select all
&1r8c1 1r8c9 ===========
&4r2c1 ===== 6r2c1 =====
&8r9c3 ........... 8r7c3
                   8r7c9 8r8c9
                         2r8c9 2r2c9
       2r8c9 ................. 2r2c9
                               6r2c9 6r2c1
             6r2c9 ................. 6r2c1
                                     6r7c1 6r7c7
                                           4r7c7 4r9c7
&4r5c2 ......................................... 4r9c2
&4r9c7 =================================== 4r7c7 =====
&6r2c1 ============================= 6r2c9 ===========
------------------------------------------------------
-4r59c1
-4r9c3
-6r8c1

--
Edits 1,2: minor cosmetics, 3: new matrix, 4: updated matrix.
Last edited by SpAce on Sun May 31, 2020 10:58 am, edited 4 times in total.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 29, 2020

Postby pjb » Sat May 30, 2020 12:29 am

Code: Select all
  8      B37      23     | 6      1      5      |C27     9      4     
eE46f     1       24     | 7      3      9      | 5      8    dD26     
  9       67      5      | 8      4      2      | 3      17     16     
 ------------------------+----------------------+---------------------
  3       9       6      | 2      5      1      | 8      4      7     
  45      45      7      | 9      6      8      | 1      2      3     
  2       8       1      | 3      7      4      | 9      6      5     
 ------------------------+----------------------+---------------------
  1467e   2      a348    | 5      9     b37     | 467d  b137   c18     
  167    A36      9      | 4      28     37     | 267    5     c128   
  457     45      348a   | 1      28b    6      | 247c   37     9     

(3)r7c3 - (37=1)r7c68 - (1=2)r7c89 - (2=6)r2c9 - r2c1
(3)r8c2 - (3=7)r1c2 - (7=2)r1c7 - (2=6)r2c9 - r2c1
(3-8)r9c3 = (8-2)r9c5 = (2-4)r9c7 = (4-6)r7c7 = r7c1 - r2c1 => -6 r2c1; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: May 29, 2020

Postby SteveG48 » Sat May 30, 2020 1:33 pm

Code: Select all
 *------------------------------------------------------------*
 |  8     37   a23    | 6     1     5     |a27    9     4     |
 |  46    1     24    | 7     3     9     | 5     8     26    |
 |  9     67    5     | 8     4     2     | 3    b17    16    |
 *--------------------+-------------------+-------------------|
 |  3     9     6     | 2     5     1     | 8     4     7     |
 |  45    45    7     | 9     6     8     | 1     2     3     |
 |  2     8     1     | 3     7     4     | 9     6     5     |
 *--------------------+-------------------+-------------------|
 |  1467  2     48-3  | 5     9    d37    | 467 cd137   18    |
 |  167  a36    9     | 4     28    37    |b267   5     128   |
 |cd457 cd45    48-3  | 1     28    6     |b247  d37    9     |
 *------------------------------------------------------------*


(3=267)r1c37,r8c2 - (6|7=241)r3c8,r89c7 - (1|4)r7c8,r9c12 = (73)r7c68&(573)r9c128 => -3 r79c3 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: May 29, 2020

Postby rjamil » Sat May 30, 2020 5:24 pm

Three steps:
Code: Select all
 +-----------------+-------------+-----------------+
 | 8     37    23  | 6  1   5    | 2[7]  9     4   |
 | 46    1     24  | 7  3   9    | 5     8     26  |
 | 9     (67)  5   | 8  4   2    | (3)   1[7]  16  |
 +-----------------+-------------+-----------------+
 | 3     9     6   | 2  5   1    | 8     4     7   |
 | 45    45    7   | 9  6   8    | 1     2     3   |
 | 2     8     1   | 3  7   4    | 9     6     5   |
 +-----------------+-------------+-----------------+
 | 1467  2     348 | 5  9   37   | 467   137   18  |
 | 167   (36)  9   | 4  28  (37) | 26-7  5     128 |
 | 457   45    348 | 1  28  6    | 247   37    9   |
 +-----------------+-------------+-----------------+
1) XY-Wing Transport: 367 @ r8c26 r3c2 ERI 7 @ b3r3c7 => -7 @ r8c7;

Code: Select all
 +-----------------+-----------+----------------+
 | 8     (37)  23  | 6  1   5  | (27)  9    4   |
 | 46    1     24  | 7  3   9  | 5     8    26  |
 | 9     67    5   | 8  4   2  | 3     17   16  |
 +-----------------+-----------+----------------+
 | 3     9     6   | 2  5   1  | 8     4    7   |
 | 45    45    7   | 9  6   8  | 1     2    3   |
 | 2     8     1   | 3  7   4  | 9     6    5   |
 +-----------------+-----------+----------------+
 | 1467  2     348 | 5  9   37 | 467   137  18  |
 | 17-6  (36)  9   | 4  28  37 | (26)  5    128 |
 | 457   45    348 | 1  28  6  | 47-2  37   9   |
 +-----------------+-----------+----------------+
2) XY-Ring: 2367 @ r1c27 r8c27 => -6 @ r8c1 => -2 @ r9c7; and after five singles

Code: Select all
 +---------------+----------+-----------------+
 | 8      37  23 | 6  1  5  | 27    9     4   |
 | 46     1   24 | 7  3  9  | 5     8     26  |
 | 9      67  5  | 8  4  2  | 3     17    16  |
 +---------------+----------+-----------------+
 | 3      9   6  | 2  5  1  | 8     4     7   |
 | 45     45  7  | 9  6  8  | 1     2     3   |
 | 2      8   1  | 3  7  4  | 9     6     5   |
 +---------------+----------+-----------------+
 | 467-1  2   34 | 5  9  37 | 467   (17)  8   |
 | (17)   36  9  | 4  8  37 | 26    5     2-1 |
 | 45(7)  45  8  | 1  2  6  | 4(7)  3     9   |
 +---------------+----------+-----------------+
3) W-Wing: 17 @ r7c8 r8c1 SL Row 9 between 7 @ r9c1 and 7 @ r9c7 => -1 @ r7c1 r8c9; stte

R. Jamil
rjamil
 
Posts: 777
Joined: 15 October 2014
Location: Karachi, Pakistan

Re: May 29, 2020

Postby eleven » Sat May 30, 2020 7:51 pm

Code: Select all
 *---------------------------------------------------------*
 |  8      37   23    |  6  1    5    |  27    9     4     |
 |  46     1    24    |  7  3    9    |  5     8     26    |
 |  9     #67   5     |  8  4    2    |  3    #17   #16    |
 |--------------------+---------------+--------------------|
 |  3      9    6     |  2  5    1    |  8     4     7     |
 |  45     45   7     |  9  6    8    |  1     2     3     |
 |  2      8    1     |  3  7    4    |  9     6     5     |
 |--------------------+---------------+--------------------|
 |  1467   2   b48-3  |  5  9   D37   | C67-4 D137  a18    |
 |  167  Aa36   9     |  4  28  A37   | B267   5     128   |
 |  457    45   348   |  1  28   6    |  247   37    9     |
 *---------------------------------------------------------*

r3c289 = 6,7,1 => r8c2=3 & r7c9=8 => r7c3=4
r3c289 = 7,1,6 => (r8c2=6->r7c7=6) & r7c68 = 37
=> -3r7c3, -4r7c7; stte
[edit: typo r6c7]
Last edited by eleven on Sat May 30, 2020 9:50 pm, edited 1 time in total.
eleven
 
Posts: 3155
Joined: 10 February 2008

Re: May 29, 2020

Postby SteveG48 » Sat May 30, 2020 9:21 pm

Another Eleven special- two apparently unrelated eliminations, with both necessary for the result. :o
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: May 29, 2020

Postby SpAce » Sat May 30, 2020 9:50 pm

SteveG48 wrote:Another Eleven special- two apparently unrelated eliminations, with both necessary for the result. :o

Did you count mine? 8-)
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 29, 2020

Postby SteveG48 » Sat May 30, 2020 11:37 pm

Still figuring yours out! :D

But yikes! You need all those eliminations! :o :o
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: May 29, 2020

Postby SpAce » Sun May 31, 2020 12:48 am

SteveG48 wrote:Still figuring yours out! :D

Good luck with that! :lol: Actually it shouldn't be hard at all for you, except maybe for those possibly confusing spread end points on the right hand side (marked with '@'). I chose to go with them instead of monster split nodes to keep the chain simpler. Either way, the overall logic should be read as:

(1r8c1 & 4r2c1 & 8r9c3) == (4r5c2 & 4r9c7 & 6r2c1) => -4 r59c1,r9c3, -6 r8c1

But yikes! You need all those eliminations! :o :o

Of course! Our motto: more is more! :D Actually I got a bit frustrated when I found a bunch of eliminations easily but none gave much of anything by themselves or even combined. That horror combo finally worked, and I was lucky to even notice it. It was kind of fun, though, since the chain turned out simpler than I'd feared. Figuring out the matrix was the hardest part. I was pretty sure I wouldn't be able to write a valid matrix for that piece of logic, but it actually might be. (That said, I trust only Cenoman's judgment with those).

Here's a matrix for your solution too, if you're interested. It seemed like another non-trivial practice case, and it was. I hope I got it right.

Steve 10x10 TM: Show
Code: Select all
 3r1c3 2r1c3
       2r1c7 7r1c7
             7r3c8 1r3c8
 3r8c2 ................. 6r8c2
             7r8c7 ..... 6r8c7 2r8c7
             7r9c7 ........... 2r9c7 4r9c7
                                     4r9c2 5r9c2
                                     4r9c1 5r9c1 7r9c1
|3r7c8 ........... 1r7c8 ............................. 7r7c8
|3r7c6 ............................................... 7r7c6
&3r9c8 ========================================= 7r9c8 =====
------------------------------------------------------------
-3r79c3

Here's one for eleven's logic too, which was also interesting (a bit harder with a 3-SIS at both ends):

eleven 9x9 BTM: Show
Code: Select all
 4r7c3 3r7c3 8r7c3
             8r7c9 1r7c9
                   1r3c9 6r3c9
                         6r3c2 6r8c2
       3r8c2 ................. 6r8c2
                               6r3c2 7r3c2
                                     7r3c8 1r3c8
|3r7c8 ................................... 1r7c8 7r7c8
|3r7c6 ......................................... 7r7c6
&6r7c7 ======================= 6r8c7 =================
------------------------------------------------------
-3r7c3
-4r7c7

As an AIC:

4r7c3 = 36b7p35|81r7c39 - 16r3c92 = 76r38c2 - 7,1r37c8|6r8c7 = 73r7c86,6r7c7 => -3r7c3, -4r7c7

That's structurally closest to mine, except mine has a 4-SIS at both ends:

SpAce 9x9 BTM: Show
Code: Select all
&1r8c1 1r8c9 ===========
&4r2c1 ===== 6r2c1 =====
&8r9c3 ........... 8r7c3
                   8r7c9 8r8c9
                         2r8c9 2r2c9
       2r8c9 ................. 2r2c9
                               6r2c9 6r2c1
             6r2c9 ................. 6r2c1
                                     6r7c1 6r7c7
                                           4r7c7 4r9c7
&4r5c2 ......................................... 4r9c2
&4r9c7 =================================== 4r7c7 =====
&6r2c1 ============================= 6r2c9 ===========
------------------------------------------------------
-4r59c1
-4r9c3
-6r8c1

Phil's was normal (2-SIS at both ends), thank goodness:

Phil 12x12 BTM (or 10x10 TM with folded ALS): Show
Code: Select all
 6r2c9 2r2c9
       2r1c7 7r1c7
             7r1c2 3r1c2
       2r8c9 ........... 8r8c9 1r8c9
                         8r7c9 1r7c9
                               1r7c8 7r7c8 3r7c8
                                     7r7c6 3r7c6
                   3r8c2 ................. 3r7c3 3r9c3
                                                 8r9c3 8r9c5
                                                       2r9c5 2r9c7
                                                             4r9c7 4r7c7
 6r7c1                                                             6r7c7
------------------------------------------------------------------------
-6r2c1

And lastly, rjamil's clean moves as three small matrices:

rjamil 4x4 PM + 4x4 SPM + 3x3 PM: Show
Code: Select all
4x4 PM

 7r8c6 3r8c6
       3r8c2 6r8c2
             6r3c2 7r3c2
 7r1c7             7r3c8
------------------------
-7r8c7

As an AIC: (7=3)r8c6 - (3=6)r8c2 - (6=7)r3c2 - r3c8 = (7)r1c7 => -7 r8c7

Code: Select all
4x4 SPM

 6r8c2 3r8c2
       3r1c2 7r1c2
             7r1c7 2r1c7
 6r8c7             2r8c7
------------------------
-6r8c1            -2r9c7

As an AIC: (6=3)r8c2 - (3=7)r1c2 - (7=2)r1c7 - (2=6)r8c7 - loop => -2 r9c7, -6 r8c1

Code: Select all
3x3 PM

 1r8c1 7r8c1
       7r9c1 7r9c7
 1r7c9       7r7c9
------------------
-1r7c1
-1r8c9

As an AIC: (1=7)r8c1 - r9c1 = r9c7 - (7=1)r7c9 => -1 r7c1,r8c9
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017


Return to Puzzles