May 26, 2017

Post puzzles for others to solve here.

May 26, 2017

Postby ArkieTech » Thu May 25, 2017 11:28 pm

Code: Select all
 *-----------*
 |.6.|...|9.3|
 |...|...|...|
 |...|.31|48.|
 |---+---+---|
 |.2.|37.|..9|
 |39.|.1.|.75|
 |7..|.98|.4.|
 |---+---+---|
 |.46|78.|...|
 |...|...|...|
 |5.7|...|.6.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: May 26, 2017

Postby eleven » Fri May 26, 2017 12:16 am

Code: Select all
 *--------------------------------------------------------------------*
 |  1248   6      125    |  2458     245    7      |  9    25   3     |
 |  2489   3578   2359   |  245689  d2456   2469   | e16   25   167   |
 |  29     57     259    |  2569     3      1      |  4    8    67    |
 |-----------------------+-------------------------+------------------|
 |  6      2      4      |  3        7      5      |  8    1    9     |
 |  3      9      8      |  246      1      246    |  26   7    5     |
 |  7      15     15     |  26       9      8      |  3    4    26    |
 |-----------------------+-------------------------+------------------|
 |  129    4      6      |  7        8      23     |  5    39   12    |
 |  1289   138    1239   | b12456   c2456   2346   |  7    39   48    |
 |  5      138    7      | a1249     24     2349   |  2-1  6    48    |
 *--------------------------------------------------------------------*

1r9c4=(1-5)r8c4=(5-6)r8c5=r2c5-(6=1)r2c7 => -1r9c7, pair to the end
To avoid the pair:
(1=4)r1c358-(4=2)r9c5-(2=1)r9c7-1r9c4=(1-5)r8c4=(5-6)r8c5=r2c5-(6=1)r2c7-(1=2)r9c7-(2=4)r9c5-(4=1)r1c358 => 1r1c3,-1r9c7
eleven
 
Posts: 3153
Joined: 10 February 2008

Re: May 26, 2017

Postby SteveG48 » Fri May 26, 2017 1:10 am

Code: Select all
 *--------------------------------------------------------------------------------*
 | 1248    6      i125     |  a2458   j245     7       |  9      j25      3       |
 | 2489    3578    2359    |  a245689  2456    2469    |  16      25      167     |
 |g29      57     h259     | ag2569    3       1       |  4       8       67      |
 *-------------------------+---------------------------+--------------------------|
 | 6       2       4       |   3       7       5       |  8       1       9       |
 | 3       9       8       |  e246     1      e246     | d26      7       5       |
 | 7       15     i15      |  f26      9       8       |  3       4       26      |
 *-------------------------+---------------------------+--------------------------|
 | 129     4       6       |   7       8       23      |  5       39      12      |
 | 1289    138     1239    | bm1246-5  2456    2346    |  7       39      48      |
 | 5       138     7       | cL1249   k24      2349    |dk12      6       48      |
 *--------------------------------------------------------------------------------*


(5*)r123c4 = (5-1)r8c4 = r9c4 - (1=26)r59c7 - 6r5c46 = r6c4 - (6|*5=29)r3c14 - (2|9=5)r3c3 - (5=12)r16c3 - (2=45)r1c58 - (4=12)r9c57 - 1r9c4 = 1r8c4 => -5 r8c4 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: May 26, 2017

Postby SteveG48 » Fri May 26, 2017 1:17 am

Tricky, Eleven. I like it!
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: May 26, 2017

Postby ArkieTech » Fri May 26, 2017 5:45 am

SteveG48 wrote:Tricky, Eleven. I like it!


Me too. 8-)
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: May 26, 2017

Postby Cenoman » Fri May 26, 2017 1:13 pm

I like eleven's chain too !
Something else:
Code: Select all
 +-----------------------+-------------------------+------------------+
 |  1248   6     C125    |  2458    C245    7      |  9   C25   3     |
 |  2489   3578   2359   |  245689   2456   2469   |  16   25   167   |
 | b29    a57   Ab259    | b2569z    3      1      |  4    8    67    |
 +-----------------------+-------------------------+------------------+
 |  6      2      4      |  3        7      5      |  8    1    9     |
 |  3      9      8      |  246      1      246    |  26   7    5     |
 |  7     b15    B15     | c26       9      8      |  3    4   d26    |
 +-----------------------+-------------------------+------------------+
 |Ff129    4      6      |  7        8      23     |  5    39 Ee12    |
 |Gg1289 Gg138  Gg1239   |Hh1246-5   2456   2346   |  7    39   48    |
 |  5      138    7      |  1249    D24     2349   | D12   6    48    |
 +-----------------------+-------------------------+------------------+

Kraken row (5)r3c234 =>-5r8c4; stte
Code: Select all
(5)r3c2- (5=6)r3c134 - (6=2)r6c4 - r6c9 = (2 - 1)r7c9 = r7c1 - r8c123 = (1)r8c4
(5)r3c3 - (5=1)r6c3 - (1=4)r1c358 - (4=1)r9c57 - r7c9 = r7c1 - r8c123 = (1)r8c4
(5)r3c4
=> -5 r8c4; stte

or in line:
(5)r3c4 = [(1=4)r9c57 - (4=1)r1c358 - (1=5)r6c3 - r3c3* = r3c2 - (5=6)r3c134 - (6=2)r6c4 - r6c9 = (2)r7c9] - (1)r7c9 = r7c1 - r8c123 = (1)r8c4 => -5 r8c4; stte

Cenoman
Cenoman
Cenoman
 
Posts: 2977
Joined: 21 November 2016
Location: France

Re: May 26, 2017

Postby Ngisa » Fri May 26, 2017 2:40 pm

Code: Select all
+----------------+------------------+-----------+
| 1248 6    125  | 2458   245  7    | 9  25 3   |
| 2489 3578 2359 | 24589-6 a2456 2469 | 16 25 167 |
| 29   57   259  | 259-6   3    1    | 4  8  67  |
+----------------+------------------+-----------+
| 6    2    4    | 3      7    5    | 8  1  9   |
| 3    9    8    | g246    1    g246  | f26 7  5   |
| 7    15   15   | h26     9    8    | 3  4  26  |
+----------------+------------------+-----------+
| 129  4    6    | 7      8    23   | 5  39 12  |
| 1289 138  1239 | c12456  b2456 2346 | 7  39 48  |
| 5    138  7    | d1249   24   2349 | e12 6  48  |
+----------------+------------------+-----------+

(6)r2c5 = (6-5)r8c5 = (5-1)r8c4 = r9c4 - (1=2)r9c7 - (2=6)r5c7 - r5c46 = (6)r6c4 => - 6 r23c4; lclste

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: May 26, 2017

Postby pjb » Fri May 26, 2017 11:19 pm

I only found lclste solutions. I am interested by Eleven's chain that goes through the same cells (r9c5 & r9c7) twice (in opposite directions). I have always limited myself to using a cell only once in a chain (although in overlapping ALSs I would use a cell twice). Something new to learn ever day!
Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: May 26, 2017

Postby SteveG48 » Sat May 27, 2017 1:44 pm

pjb wrote:I am interested by Eleven's chain that goes through the same cells (r9c5 & r9c7) twice (in opposite directions).


I'll sometimes do this just to avoid posting a "proof by contradiction". Interesting how we have an aversion to that.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles