SV It's mentally stimulating to explore alternative search methods such as quantums and CoALS to find eliminations but we should avoid over-egging the pudding in inventing new ways to notate them when simpler methods exist. I consider it's far more informative to briefly describe the discovery method separately although DonM has different views.
The analogy I used in the quantums thread still applies; using colouring if we fall on an XWing that we failed to spot earlier we don't then call it a colouring deduction.
Your quantum example:
- Code: Select all
*-----------------------*-----------------------*-----------------------*
| <1> 678 5678 | 489a <2> 789a | 5689 489 <3> |
| 789 378 <4> | <5> 379 <6> | <2> 189d 19d |
| 569 <2> 356 | 13489b 349 1389b | 5689c <7> 4569 |
*-----------------------*-----------------------*-----------------------*
| <3> 1467 12567 | 129 569 129 | 1679 1249 <8> |
| 268 <9> 1268 | <7> 36 <4> | 136 <5> 126 |
| 24567 1467 12567 | 12389 3569 12389 | 13679 12349 124679 |
*-----------------------*-----------------------*-----------------------*
| 267 1367 <9> | 236 <8> 2357 | <4> 123 1257 |
| 2478 <5> 12378 | 2349 3479 2379 | 13789 <6> 1279 |
| 24678 34678 23678 | 23469 <1> 23579 | 35789 2389 2579 |
*-----------------------*-----------------------*-----------------------*
<Lukes notation> : (9)r1c46 = (QNPx8)r1c46 - (8)r3c46 = (8)r3c7 - (8)r2c8 = (np19)r2c89 => r2c5, r1c78<>9
Using #n: (9=478#2)r1c46 - (48)r3c46 = (8)r3c7 - (8=19)r2c89 => r1c78,r2c5 <> 9
To spell out the first weak link in words; two digits from (478)r1c46 and both digits in (48)r3c46 can't be simultaneously true.
[Edit Sorry this is flawed - see my next post] Looking for CoALS patterns is a way to find Multi-Sector Locked Sets which can be expressed as AIC chains or nets.
- Code: Select all
*--------------------------*--------------------------*--------------------------*
| 3569 5689 68 | 79 <2> 1379 | 369 <4> 15679 |
| 359 <7> 24 | 489 1348 <6> | 2389 1235 1259 |
| 369 <1> 24 | <5> 3478 34789 | 23689 2367 2679 |
*--------------------------*--------------------------*--------------------------*
| <2> 356 <7> | 49c 1456 149 | 3469 <8> 14569 |
| 156 568 168 | <3> 4568b 2489bd | <7> 256 24569ae |
| <4> 3568 <9> | 278 15678 1278 | 236 12356 1256 |
*--------------------------*--------------------------*--------------------------*
| 79 249 <5> | <6> 478 2478 | <1> 29 <3> |
| <8> 26 <3> | <1> <9> <5> | 246 267 2467 |
| 1679 2469 16 | 247 347 2347 | <5> 269 <8> |
*--------------------------*--------------------------*--------------------------*
The AIC is (4)r5c9 = (4)r5c56 - (4=9)r4c4 - (9)r5c6 = (9)r5c9 - Loop => r4c56 <> 4, r4c6 <> 9, r5c9 <> 256
The MSLS is MS-HS:(49)r5,(25678)b5 (7 candidates/cells) => Elims:14r4c5, 256r5c9, 1r6c5, 1r6c6
Follow-on eliminations produce the same end result.
<Harvard's original notation> was
A{[r5c125]-56-[r5c1235](56|18|4)-4-[r5c5]} -4- B{[r4c4](4|9)} -9- C{[r5c6]-9-[r5c123568](9|1248|56)-56-[r5c1258]}
A: Almost Locked Set in the cells [r5c1235] with the numbers (14568).
B: Almost Locked Set in the cells [r4c4] with the numbers (49).
C: Almost Locked Set in the cells [r5c123568] with the numbers (1245689).
[r5c9]<>5.
[r5c9]<>6.
However note that it's not always possible to translate XSudo rank 0 patterns into MSLSs when extensive use is made of truth and link sets confined to cells. They must be converted to house sets and that isn't always possible.
PS I see Eleven has posted while I've been writing - scanning but not digesting it, it seems we're on the same song sheet.