- Code: Select all
*-----------*
|..5|4.3|2..|
|...|179|...|
|9..|...|..7|
|---+---+---|
|78.|3.1|.95|
|.5.|...|.2.|
|19.|8.4|.36|
|---+---+---|
|8..|...|..4|
|...|618|...|
|..7|9.5|6..|
*-----------*
Play/Print this puzzle online
*-----------*
|..5|4.3|2..|
|...|179|...|
|9..|...|..7|
|---+---+---|
|78.|3.1|.95|
|.5.|...|.2.|
|19.|8.4|.36|
|---+---+---|
|8..|...|..4|
|...|618|...|
|..7|9.5|6..|
*-----------*
6 7 5 | 4 8 3 | 2 1 9
234 234 348 | 1 7 9 | 5 6 38
9 13 c138 | 5 6 2 |b38 4 7
---------------------+----------------------+---------------------
7 8 6 | 3 2 1 | 4 9 5
34 5 34 | 7 9 6 |a18 2 18
1 9 2 | 8 5 4 | 7 3 6
---------------------+----------------------+---------------------
8 6 d19 | 2 3 7 | 9-1 5 4
5 234 349 | 6 1 8 | 39 7 23
23 123 7 | 9 4 5 | 6 8 123
*--------------------------------------------------*
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 348 | 1 7 9 | 5 6 3-8 |
| 9 d13 138 | 5 6 2 |e38 4 7 |
*----------------+----------------+----------------|
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 | 18 2 a18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
*----------------+----------------+----------------|
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 c123 7 | 9 4 5 | 6 8 b123 |
*--------------------------------------------------*
+-------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 348 | 1 7 9 | 5 6 38 |
| 9 13 138 | 5 6 2 | 38 4 7 |
+-------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+-------------+-------+----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
+-------------+-------+----------+
*--------------------------------------------------------------*
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 348 | 1 7 9 | 5 6 38 |
| 9 c13 d138 | 5 6 2 |b38 4 7 |
|--------------------+--------------------+--------------------|
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 |a18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
|--------------------+--------------------+--------------------|
| 8 6 e19 | 2 3 7 | 9-1 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
*--------------------------------------------------------------*
*--------------------------------------------------*
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 b348 | 1 7 9 | 5 6 a38 |
| 9 13 138 | 5 6 2 | 8-3 4 7 |
|----------------+----------------+----------------|
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 b34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
|----------------+----------------+----------------|
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 b349 | 6 1 8 |c39 7 2-3 |
| 23 123 7 | 9 4 5 | 6 8 12-3 |
*--------------------------------------------------*
(3=8)r2c9-(8=9)r258c3-(9=3)r8c7 => -3r3c7,r89c9; ste
+-------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 348 | 1 7 9 | 5 6 38 |
| 9 a13 138 | 5 6 2 | 8-3 4 7 |
+-------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+-------------+-------+----------+
| 8 6 c19 | 2 3 7 | d19 5 4 |
| 5 24-3 349 | 6 1 8 | e39 7 23 |
| 23 b123 7 | 9 4 5 | 6 8 123 |
+-------------+-------+----------+
ixsetf wrote:
r3c3 = 1, r9c2 = 1 (only 1 in box), r7c7 = 1 (only 1 in box), r5c9 = 1 (only 1 in box), r5c7 = 8 (only value in box), r2c9 = 8 (only 8 in box), top left box contains no position for an 8, therefore r3c3 =/= 1. basics to end.
+---------------+-------+-----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 f348 | 1 7 9 | 5 6 e38 |
| 9 a13 g38-1 | 5 6 2 | 38 4 7 |
+---------------+-------+-----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 | 18 2 d18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+---------------+-------+-----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 b123 7 | 9 4 5 | 6 8 c123 |
+---------------+-------+-----------+
+-------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 348 | 1 7 9 | 5 6 38 |
| 9 13 138 | 5 6 2 | 38 4 7 |
+-------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+-------------+-------+----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
+-------------+-------+----------+
top left box
+-------+-------+-------+
| . . . | . . . | . . . |
| . 1 . | . 2 . | . 3 . |
| . . . | . . . | . . . |
+-------+-------+-------+
| . . . | . . . | . . . |
| . 4 . | . 5 . | . 6 . |
| . . . | . . . | . . . |
+-------+-------+-------+
| . . . | . . . | . . . |
| . 7 . | . 8 . | . 9 . |
| . . . | . . . | . . . |
+-------+-------+-------+
Marty R. wrote:
- Code: Select all
+-------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 348 | 1 7 9 | 5 6 38 |
| 9 13 138 | 5 6 2 | 38 4 7 |
+-------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+-------------+-------+----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
+-------------+-------+----------+
I wasted too much time and tried too hard just to fail in an attempt to play the BUG+8
(1=3)r3c2-(3=8)r3c7-(8=1)r5c7-r5c9=r9c9=>r9c2<>1
Sudtyro2 wrote:Marty R. wrote:
- Code: Select all
+-------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
| 234 234 348 | 1 7 9 | 5 6 38 |
| 9 13 138 | 5 6 2 | 38 4 7 |
+-------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
| 34 5 34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+-------------+-------+----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
+-------------+-------+----------+
I wasted too much time and tried too hard just to fail in an attempt to play the BUG+8
(1=3)r3c2-(3=8)r3c7-(8=1)r5c7-r5c9=r9c9=>r9c2<>1
Hi Marty,
I can't handle BUG+8, but there is an AUR(34)[r25c13] => (8)r2c3=(2)r2c1, via internals.
So, I can form (8)r2c3=(2-4)r2c1=(4-3)r5c1=(3)r5c3 => r2c3<>3, but that's not enough for basics to the end. Maybe externals?
I think there's also a 6-cell ADP(34)[r2c12,r5c13,r8c23], but that's getting way beyond my pay grade. Any ideas?
SteveC
+--------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
|*234 234 *348 | 1 7 9 | 5 6 38 |
| 9 13 138 | 5 6 2 | 38 4 7 |
+--------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
|*34 5 *34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+--------------+-------+----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
+--------------+-------+----------+
Sudtyro2 wrote:So, I can form (8)r2c3=(2-4)r2c1=(4-3)r5c1=(3)r5c3 => r2c3<>3, but that's not enough for basics to the end. Maybe externals?
Marty R. wrote: The notation is a little hard to follow with all those b's in there, but I don't see how you conclude that r2c3<>3 from that notation. You've shown that if r2c1=2, then r5c3=3. What if r2c3=8? That'll also show r2c3<>3, but isn't notated...
Sudtyro2 wrote:
- Code: Select all
+--------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
|*234 234 *348 | 1 7 9 | 5 6 38 |
| 9 13 138 | 5 6 2 | 38 4 7 |
+--------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
|*34 5 *34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+--------------+-------+----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
+--------------+-------+----------+Sudtyro2 wrote:So, I can form (8)r2c3=(2-4)r2c1=(4-3)r5c1=(3)r5c3 => r2c3<>3, but that's not enough for basics to the end. Maybe externals?Marty R. wrote: The notation is a little hard to follow with all those b's in there, but I don't see how you conclude that r2c3<>3 from that notation. You've shown that if r2c1=2, then r5c3=3. What if r2c3=8? That'll also show r2c3<>3, but isn't notated...
Thx, Marty, for the feedback! I may have been a little too brief in the chain notation, so let me expand on that a bit.
To prevent the UR(34)r25c13, one must place (8)r2c3 and/or (2)r2c1. Hence, there exists a strong-inference link between the two, which I write simply as (8)r2c3=(2)r2c1. I can then use that link to form a bidirectional AIC:
(8)r2c3=(2)r2c1-(4)r2c1=(4-3)r5c1=(3)r5c3 => r2c3<>3
The AIC shows a derived strong inference between (8)r2c3 and (3)r5c3, which become the “pincers” (if I understand that term correctly) and therefore provide for the exclusion without having to assign any specific parities.
It seemed easier for me to use the AIC directly rather than having to run separate implication streams on (8)r2c3 and (2)r2c1 to look for common eliminations.
I think technically one should probably write the strong-inference link between (8)r2c3 and (2)r2c1 as something like (8=34)r25c13-UR-(34=2)r25c13, but I chose the simpler form.
So, the AIC => r2c3<>3, but that's not very useful for a “one-stepper” solution.
SteveC
+--------------+-------+----------+
| 6 7 5 | 4 8 3 | 2 1 9 |
|*234 234 *348 | 1 7 9 | 5 6 38 |
| 9 13 138 | 5 6 2 | 38 4 7 |
+--------------+-------+----------+
| 7 8 6 | 3 2 1 | 4 9 5 |
|*34 5 *34 | 7 9 6 | 18 2 18 |
| 1 9 2 | 8 5 4 | 7 3 6 |
+--------------+-------+----------+
| 8 6 19 | 2 3 7 | 19 5 4 |
| 5 234 349 | 6 1 8 | 39 7 23 |
| 23 123 7 | 9 4 5 | 6 8 123 |
+--------------+-------+----------+
Marty R. wrote:... We agree that r2c3<>3, but I still don't see it from the notation. Yes, the 2 proves that r5c3=3 and that r2c3 has to be<>3. Then what? The reader has to look and notice that if r2c3=8 that creates a 13 pair in box 1 which also says r2c3<>3. But I really don't know if that's the way it should be.