Maximal invalid patterns with the fewest number of clues.

Everything about Sudoku that doesn't fit in one of the other sections

Maximal invalid patterns with the fewest number of clues.

Postby JPF » Fri Jun 23, 2023 8:40 pm

To avoid any ambiguity, here are some definitions:

  • Invalid pattern: A pattern that does not contain a valid puzzle.
  • Maximal invalid pattern: An invalid pattern P such that for every cell c not belonging to P, the pattern P+c is valid.
    This concept was introduced by Serg and blue.
Now the question is: what is the smallest number of clues in a maximal invalid pattern?

JPF
Last edited by JPF on Sat Jun 24, 2023 5:06 pm, edited 1 time in total.
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Maximal invalid patterns with the fewest number of clues

Postby Serg » Sat Jun 24, 2023 12:08 am

Hi, JPF!
JPF wrote:Now the question is: what is the smallest number of clues in a maximal invalid pattern?

I don't know exact answer to your question. My candidate - "Crab pattern":
Code: Select all
Crab pattern (23 clues)

x . . . . . . . x
. x . . . . . x .
. . x . x . x . .
. . . x x x . . .
. . . x x x . . .
. . . x x x . . .
. . x . x . x . .
. x . . . . . x .
x . . . . . . . x

Serg
Serg
2018 Supporter
 
Posts: 909
Joined: 01 June 2010
Location: Russia

Re: Maximal invalid patterns with the fewest number of clues

Postby JPF » Sat Jun 24, 2023 11:42 am

That's a good start, but I think we can do better. In any case, I have something better in my bag 8-)

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Maximal invalid patterns with the fewest number of clues

Postby m_b_metcalf » Sat Jun 24, 2023 1:21 pm

JPF wrote:Invalid pattern: A pattern that does not contain a valid puzzle.

Here is an invalid pattern, with 16 clues, P:
Code: Select all
 . . . . . . . . .
 4 . . . . . . . .
 . 2 . . . . . . .
 . . . . 5 . 4 . 7
 . . 8 . . . 3 . .
 . . 1 . 9 . . . .
 3 . . 4 . . 2 . .
 . 5 . 1 . . . . .
 . . . 8 . 6 . . .

Maximal invalid pattern: An invalid pattern P such that for any cell c not belonging to P, the pattern P+c is valid.

Here is the pattern P+c, forming a valid pattern:
Code: Select all
 . . . . . . . 1 .
 4 . . . . . . . .
 . 2 . . . . . . .
 . . . . 5 . 4 . 7
 . . 8 . . . 3 . .
 . . 1 . 9 . . . .
 3 . . 4 . . 2 . .
 . 5 . 1 . . . . .
 . . . 8 . 6 . . .

Now the question is: what is the smallest number of clues in a maximal invalid pattern?

Well, 16. But I've clearly misunderstood!

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: Maximal invalid patterns with the fewest number of clues

Postby JPF » Sat Jun 24, 2023 3:25 pm

Well, your 16-clues pattern P is invalid:
Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| x . . | . . . | . . . |
| . x . | . . . | . . . |
+-------+-------+-------+
| . . . | . x . | x . x |
| . . x | . . . | x . . |
| . . x | . x . | . . . |
+-------+-------+-------+
| x . . | x . . | x . . |
| . x . | x . . | . . . |
| . . . | x . x | . . . |
+-------+-------+-------+

It's true.

However, to prove that it is a maximal invalid pattern, you need to show that all 65 (= 81-16) patterns created by P + one clue are valid.

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Maximal invalid patterns with the fewest number of clues

Postby m_b_metcalf » Sat Jun 24, 2023 4:55 pm

JPF wrote:However, to prove that it is a maximal invalid pattern, you need to show that all 65 (= 81-16) patterns created by P + one clue are valid.

In other words, rather than:

Maximal invalid pattern: An invalid pattern P such that for any cell c not belonging to P, the pattern P+c is valid.

Maximal invalid pattern: An invalid pattern P such that for every cell c not belonging to P, the pattern P+c is valid.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: Maximal invalid patterns with the fewest number of clues

Postby JPF » Sat Jun 24, 2023 5:07 pm

Thank you.
Definition edited.

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Maximal invalid patterns with the fewest number of clues

Postby Serg » Sun Jun 25, 2023 4:23 pm

Hi, Mike!
m_b_metcalf wrote:
JPF wrote:However, to prove that it is a maximal invalid pattern, you need to show that all 65 (= 81-16) patterns created by P + one clue are valid.

In other words, rather than:

Maximal invalid pattern: An invalid pattern P such that for any cell c not belonging to P, the pattern P+c is valid.

Maximal invalid pattern: An invalid pattern P such that for every cell c not belonging to P, the pattern P+c is valid.

I think, "for any" and "for every" are synonyms in mathematics. (See, for example, an article Universal quantification.)

Serg
Serg
2018 Supporter
 
Posts: 909
Joined: 01 June 2010
Location: Russia

Re: Maximal invalid patterns with the fewest number of clues

Postby JPF » Sun Jun 25, 2023 4:43 pm

I should have written:

P is maximal invalid if ∀c ∉P ∶ P+c is valid

but not everyone is familiar with these elementary mathematical notations.
Using LaTeX would be very useful in certain cases.

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Maximal invalid patterns with the fewest number of clues

Postby blue » Sun Jun 25, 2023 10:41 pm

Here are two size 18 cases.
Each one has 12 automorphisms and 8 "+1" clue types:

Code: Select all
. 1 . . . . 1 . .    a . b c d b . e f
1 . . . . 1 . . .    . g d d g . e h e
. . . . 1 . . . 1    b d c b . a f e .
. . . 1 . . . 1 .    c d b . e f a . b
. . 1 . . . 1 . .    d g . e h e . g d
. 1 . . . 1 . . .    b . a f e . b d c
1 . . . 1 . . . .    . e f a . b c d b
. . . 1 . . . . 1    e h e . g d d g .
. . 1 . . . . 1 .    f e . b d c b . a

puzzles:
62....1..9....8.......4...6...7...1...4...5...6...3...1...6.......5....3..3....8. (a)
.82...9..1....3.......7...5...4...7...6...2...9...5...7...2.......8....9..5....3. (b)
.2.1..6..5....7.......9...4...6...5...4...2...9...3...6...4.......2....9..7....3. (c)
.9..4.8..3....6.......1...2...7...3...4...6...7...2...6...8.......9....7..2....5. (d)
.4....72.3....4.......8...9...2...4...9...5...1...6...4...5.......7....2..8....3. (e)
.3....5.87....9.......1...2...5...4...8...3...6...4...1...3.......8....6..2....9. (f)
.4....1..76...9.......3...5...7...4...1...3...7...4...3...8.......1....7..9....6. (g)
.6....1..7....8.2.....4...9...7...1...3...6...4...5...1...3.......6....4..8....5. (h)

Code: Select all
. . . 1 . . 1 . .    a b b . c c . d d
. . 1 . . 1 . . .    b e . c f . d g h
. 1 . . 1 . . . .    b . e c . f d h g
1 . . 1 . . . . .    . c c . d d a b b
. . 1 . . . . . 1    c f . d g h b e .
. 1 . . . . . 1 .    c . f d h g b . e
1 . . . . . 1 . .    . d d a b b . c c
. . . . . 1 . . 1    d g h b e . c f .
. . . . 1 . . 1 .    d h g b . e c . f

puzzles:
4..1..2....3..5....9..6....2..4.......5.....9.7.....6.1.....4.......7..6....9..3. (a)
.3.9..7....8..4....9..5....7..4.......2.....4.6.....8.6.....9.......8..6....2..4. (b)
...49.2....7..3....1..2....2..9.......8.....1.5.....7.4.....9.......7..3....8..1. (c)
...8..69...1..9....3..7....6..2.......2.....1.4.....3.8.....2.......3..4....4..7. (d)
...2..5...79..1....1..4....3..5.......1.....9.6.....7.2.....8.......7..1....9..6. (e)
...9..3....8.17....4..2....3..5.......9.....1.2.....7.9.....5.......4..2....7..1. (f)
...2..8....7..5.1..3..9....8..3.......5.....2.6.....7.2.....3.......7..8....1..6. (g)
...7..8....2..1..9.6..4....8..3.......4.....6.7.....4.7.....5.......9..1....6..2. (h)

There are no size 16 cases, since we know all of the valid 17-clue patterns and the "-1" patterns that can be produced from them, and none of those satisfies the property that each of its "+1" extensions, is a valid 17-clue pattern.

Size 17 seems possible.
blue
 
Posts: 1059
Joined: 11 March 2013

Re: Maximal invalid patterns with the fewest number of clues

Postby JPF » Mon Jun 26, 2023 7:49 am

Here is my candidate (18 clues):
Code: Select all
+-------+-------+-------+
| . . . | x x . | . . . |
| . . x | . . x | . . . |
| . x . | . . . | x . . |
+-------+-------+-------+
| x . . | . . . | . x . |
| x . . | . . . | . . x |
| . x . | . . . | . . x |
+-------+-------+-------+
| . . x | . . . | . x . |
| . . . | x . . | x . . |
| . . . | . x x | . . . |
+-------+-------+-------+

...11......1..1....1....1..1......1.1.......1.1......1..1....1....1..1......11...


valid puzzles:
Code: Select all
1..23......4..5....6....7..2......3.3.......4.1......2..6....2....8..5......14...
.1.23......4..5....6....7..8......2.6.......5.7......3..5....3....1..4......76...
..123......4..5....6....4..7......5.3.......2.8......3..5....9....8..6......72...
...123.....4..5....6....7..8......5.7.......3.2......6..3....2....7..8......98...
...12.3....4..5....3....6..7......5.8.......9.6......4..5....1....6..2......98...
...12..3...4..5....6....7..8......2.6.......1.3......8..5....1....3..4......96...
...12...3..4..5....6....7..8......2.3.......1.1......5..6....4....7..9......83...
...12.....34..5....6....4..7......2.8.......5.9......8..6....4....9..6......81...
...12......34.5....5....6..7......4.6.......3.8......2..2....1....7..9......68...
...12......1.34....5....6..7......4.8.......1.3......2..4....5....6..2......78...
...12......3..45...6....7..7......2.8.......4.5......1..2....6....7..9......45...
...12......3..4.5..6....7..2......1.8.......4.9......3..5....4....7..9......96...
...12......3..4....56...7..1......6.7.......2.4......8..5....9....7..3......81...
...12......3..4....5.6..7..5......4.6.......8.7......3..8....6....5..2......37...
...12......3..4....5..3.6..7......4.4.......6.2......8..4....1....9..7......76...
...12......3..4....5...36..1......7.8.......9.7......1..5....3....7..5......19...
...12......3..4....5....6..5..7...1.2.......4.8......5..4....9....6..8......32...
...12......3..4....5....6..7...3..2.1.......4.6......1..2....3....6..8......57...
...12......3..4....5....6..7....1.4.6.......2.8......3..4....1....9..8......65...
...12......3..4....5....6..7......1.6...3...4.8......2..4....6....7..3......53...


JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Maximal invalid patterns with the fewest number of clues

Postby Serg » Mon Jun 26, 2023 12:20 pm

Hi, Blue and JPF!
Impressive work! You discovered new family of "linear" maximal invalid patterns. Congratulations!
But I don't understand at the monent - can I verify your discoveries or not.

Serg
Serg
2018 Supporter
 
Posts: 909
Joined: 01 June 2010
Location: Russia

Re: Maximal invalid patterns with the fewest number of clues

Postby JPF » Mon Jun 26, 2023 4:31 pm

Blue wrote:Size 17 seems possible.

Here is one:
Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| . . . | . . . | . x x |
| . . x | . x x | . . . |
+-------+-------+-------+
| . . . | . . x | x . . |
| . x . | . . . | . . . |
| x x . | . . . | . . x |
+-------+-------+-------+
| . . . | x . . | . . . |
| . . . | x x . | x . . |
| . . x | . . . | x . . |
+-------+-------+-------+

This pattern is invalid, as it does not belong to the set of 33,884 ed-patterns out of the 49,158 puzzles with 17 clues.
Furthermore, for every cell c not belonging to this pattern P : P+c is valid.
Here are the 64 valid corresponding puzzles.
Code: Select all
1...............23..4.56........74...3.......82......7...5........28.5....9...7..
.1..............23..4.56........75...8.......93......8...2........39.1....7...8..
..1.............23..4.56........46...6.......72......8...3........24.7....5...1..
...1............23..4.56........25...7.......23......8...3........78.1....5...6..
....1...........23..1.45........64...3.......27......8...1........23.7....5...8..
.....1..........23..1.45........45...6.......23......6...6........72.8....5...9..
......1.........23..4.56........47...3.......82......9...9........32.5....1...4..
.......1........23..4.56........45...3.......17......8...8........31.7....6...2..
........1.......23..4.56........47...2.......83......9...1........38.9....5...6..
.........1......23..4.56........42...3.......78......1...1........37.5....6...9..
..........1.....23..4.56........47...6.......32......8...2........17.4....6...5..
...........1....23..4.56........15...2.......73......8...2........84.1....6...4..
............1...23..1.45........67...7.......23......5...3........47.8....9...6..
.............1..23..4.56........46...7.......23......8...3........76.9....8...4..
..............1.23..4.56........34...1.......32......5...2........57.8....8...9..
...............123..4.56........47...5.......32......8...3........87.4....5...6..
................123.4.56........43...7.......21......8...8........21.9....6...5..
................12.34.56........47...6.......12......8...2........98.3....5...4..
................12..3456........78...5.......42......6...6........21.5....7...9..
................12..3.456.......75...8.......21......7...4........18.2....5...3..
................12..3.45.6......75...8.......12......9...1........62.8....5...9..
................12..3.45..6.....74...5.......21......8...2........69.8....7...3..
................12..3.45...6....37...8.......12......5...2........85.4....9...3..
................12..3.45....5...64...1.......72......8...1........63.9....8...5..
................12..3.45.....4..67...7.......61......8...2........19.3....5...9..
................12..3.45......6.37...2.......81......9...9........28.4....4...3..
................12..3.45.......364...2.......71......6...4........71.3....5...8..
................12..3.45........463..7.......82......9...8........21.4....5...3..
................12..3.45........64.7.5.......81......9...2........19.7....6...3..
................12..3.45........64..78.......12......3...1........78.6....5...3..
................12..3.45........63...25......71......4...1........57.8....9...6..
................12..3.45........36...7.1.....18......4...2........68.7....8...3..
................12..3.14........56...2..6....71......8...8........12.9....4...3..
................12..3.45........36...7...4...18......9...1........86.4....7...3..
................12..3.45........34...6....5..71......8...2........71.8....5...9..
................12..3.45........36...7.....8.16......7...2........16.8....5...7..
................12..3.45........65...7......812......7...2........83.6....5...4..
................12..3.45........64...7.......218.....3...1........87.6....5...9..
................12..3.45........35...6.......17.2....8...1........75.6....8...3..
................12..3.45........67...8.......92..3...4...4........12.8....7...5..
................12..3.45........65...2.......47...8..9...9........12.7....5...4..
................12..3.45........67...5.......21....8.4...2........89.4....6...3..
................12..3.45........36...7.......12.....89...8........17.2....5...9..
................12..3.45........35...6.......14......77..2........15.6....8...3..
................12..3.45........35...6.......14......6.7.1........25.3....8...9..
................12..3.45........34...6.......12......7..82........56.9....7...3..
................12..3.45........46...7.......81......9...21.......79.4....6...3..
................12..3.45........35...2.......61......7...2.6......78.3....4...9..
................12..3.45........34...6.......72......6...1..6.....27.8....9...5..
................12..3.45........36...7.......21......8...8...7....21.9....5...4..
................12..3.45........36...7.......28......7...1....6...28.4....4...3..
................12..3.45........65...7.......21......8...8.....9..27.1....5...9..
................12..3.45........36...1.......27......8...1......6.72.4....4...9..
................12..3.45........36...7.......12......4...4.......826.5....9...3..
................12..3.45........36...2.......71......8...2........9684....4...5..
................12..3.45........36...5.......71......8...2........18.37...9...5..
................12..3.45........36...7.......82......4...1........28.4.9..9...5..
................12..3.45........35...6.......71......6...1........27.8..5.8...9..
................12..3.45........65...2.......71......4...2........48.3...36...9..
................12..3.45........36...5.......21......7...1........86.4....74..3..
................12..3.45........36...5.......12......7...2........71.3....8.9.4..
................12..3.45........36...2.......71......8...2........98.3....5..74..
................12..3.45........36...7.......18......7...2........19.7....5...84.
................12..3.45........36...7.......21......4...6........71.5....8...3.9

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Maximal invalid patterns with the fewest number of clues

Postby Serg » Tue Jun 27, 2023 3:26 pm

Hi, JPF!
Congratulations with your 17-clue maximal invalid pattern discovery!
I've done some checks and can confirm, that

1. Your 17-clue pattern doesn't coincide with any isomorphs of 49158 17-clue known puzzles' patterns.
2. Your 64 1-clue extention patterns are all possible ED extentions of original 17-clue maximal invalid pattern.
3. All published 64 1-clue extention puzzles have unique solutions.

It would be nice to check your 17-clue maximal invalid pattern - is it really invalid, but it's rather difficult task...

Serg
Serg
2018 Supporter
 
Posts: 909
Joined: 01 June 2010
Location: Russia

Re: Maximal invalid patterns with the fewest number of clues

Postby coloin » Tue Jun 27, 2023 5:57 pm

Well done for finding those examples
Serg wrote:It would be nice to check your 17-clue maximal invalid pattern - is it really invalid, but it's rather difficult task...
Serg

Indeed knowing that a pattern is invalid is a tricky one...but not in JPF's case as all the valid 17C patterns are known
Assuming the pattern is invalid, the more clues it has makes it more likely that all +1 patterns will have a puzzle.

I started with a 20C pattern from which I found 6714 puzzles - and only this number seem to exist.
This is unusually low for a 20C valid pattern
Code: Select all
1..234....23....5...6......4...1......5.....6....47......5.........6..1...73....8-20C example
x..xxx....xx....x...x......x...x......x.....x....xx......x.........x..x...xx....x-20C

There were 190 19C puzzles with 12 valid patterns with puzzles and 8 invalid patterns with no puzzles
Hidden Text: Show
Code: Select all
...234....56....1...7......2...1......3.....4....58......9.........2..5...45....8
...234....56....2...7......3...5......8.....9....23......7.........6..5...18....4
...234....56....3...4......2...7......8.....1....93......5.........6..5...24....8
...234....56....3...7......2...8......1.....6....49......3.........2..8...97....5
...234....56....3...7......4...5......8.....1....41......7.........6..5...18....2
...234....56....3...7......4...8......9.....1....13......6.........5..4...19....8
...234....56....4...7......2...4......1.....8....56......6.........2..3...81....7
...234....56....4...7......2...4......1.....8....78......1.........2..3...95....1
...234....56....4...7......2...4......8.....1....51......9.........2..3...18....7
...234....56....4...7......2...4......8.....1....61......6.........2..3...18....7
...234....56....4...7......2...6......8.....1....41......7.........2..6...18....5
...234....56....4...7......2...7......8.....1....45......5.........6..5...18....2
...234....56....4...7......3...4......1.....8....56......6.........2..3...81....7
...234....56....4...7......3...4......1.....8....78......1.........2..3...95....1
...234....56....4...7......3...4......1.....8....78......1.........2..3...95....2
...234....56....4...7......3...4......1.....8....78......6.........5..3...21....9
...234....56....4...7......3...4......1.....8....98......6.........5..3...91....7
...234....56....4...7......3...4......8.....1....25......8.........6..2...15....9
...234....56....4...7......3...4......8.....1....25......8.........9..2...15....6
...234....56....4...7......3...4......8.....1....51......9.........2..3...18....6
...234....56....4...7......3...4......8.....1....61......6.........2..3...18....7
...234....56....4...7......3...4......8.....1....61......7.........5..3...19....2
...234....56....4...7......3...4......8.....1....91......6.........5..3...18....5
...234....56....4...7......3...4......8.....7....51......9.........2..3...18....6
...234....56....4...7......3...4......8.....9....25......9.........6..2...17....8
...234....56....4...7......3...6......8.....1....41......8.........5..3...17....2
...234....56....4...7......3...6......8.....1....47......8.........5..3...17....2
...234....56....4...7......3...6......8.....9....41......8.........5..3...17....2
...234....56....4...7......3...7......1.....2....48......6.........5..3...29....1
...234....56....4...7......3...7......8.....1....49......6.........5..3...18....5
...234....56....4...7......3...7......8.....1....49......8.........5..3...16....2
...234....56....4...7......3...7......8.....2....48......6.........5..3...21....9
...234....56....4...7......3...7......8.....9....48......6.........5..3...19....2
...234....56....4...7......3...8......9.....1....41......7.........5..3...19....8
...234....56....4...7......3...8......9.....1....46......7.........5..3...19....6
...234....56....4...7......4...6......8.....1....15......8.........4..6...19....2
...234....56....4...7......4...6......8.....1....15......8.........4..6...19....7
...234....56....4...7......4...6......8.....1....51......8.........4..6...19....7
...234....56....4...7......4...6......8.....9....25......7.........4..6...18....3
...234....56....4...7......4...6......8.....9....95......8.........4..6...27....8
...234....56....4...7......4...8......9.....1....57......9.........4..3...17....2
...234....56....4...7......5...4......1.....8....78......1.........5..3...96....2
...234....56....7...8......2...7......1.....4....86......9.........2..5...45....1
...234....56....7...8......3...2......1.....6....73......7.........9..2...45....8
...234....56....7...8......3...7......1.....6....23......7.........9..2...45....8
1...34....25....1...6......3...4......7.....8....21......8.........1..3...96....7
1...34....25....1...6......3...7......7.....6....48......6.........1..3...95....7
1...34....25....1...6......4...1......7.....8....23......8.........4..5...96....7
1...34....25....6...7......3...1......6.....5....83......6.........2..1...89....7
1...34....25....6...7......3...1......6.....7....83......5.........4..1...97....4
1...34....25....6...7......4...1......6.....8....49......8.........2..1...85....9
1...34....25....6...7......4...1......8.....5....93......8.........4..9...26....7
1...34....56....3...2......4...7......8.....5....13......6.........9..7...48....2
1...34....56....3...7......4...1......8.....5....23......6.........9..1...48....7
1...34....56....4...2......4...7......8.....5....19......9.........4..7...58....2
1...34....56....4...7......3...4......8.....2....52......6.........1..3...28....7
1...34....56....4...7......3...4......8.....2....52......7.........1..3...28....6
1..2.4....53....6...2......7...8......6.....3....97......3.........1..9...45....2
1..2.4....53....6...7......4...1......2.....8....48......3.........5..1...87....5
1..2.4....53....6...7......4...1......2.....8....48......6.........5..1...87....5
1..2.4....53....6...7......4...1......8.....2....48......6.........5..1...27....9
1..2.4....53....6...7......4...1......8.....5....49......6.........2..1...97....8
1..2.4....56....1...2......4...5......3.....7....81......5.........6..5...97....2
1..2.4....56....1...7......2...6......3.....8....59......1.........7..6...94....3
1..2.4....56....3...3......2...1......7.....6....48......3.........2..1...89....5
1..2.4....56....3...3......2...4......7.....6....18......3.........2..1...89....5
1..2.4....56....3...3......4...1......7.....5....48......3.........2..1...89....7
1..2.4....56....3...3......4...1......7.....6....48......3.........2..1...85....7
1..2.4....56....3...3......4...1......7.....6....48......3.........2..1...89....7
1..2.4....56....3...3......4...1......7.....6....48......9.........2..1...83....5
1..2.4....56....3...3......4...1......7.....8....48......7.........2..1...86....5
1..2.4....56....3...3......4...1......7.....8....48......7.........2..1...89....5
1..2.4....56....3...3......4...1......7.....8....49......7.........2..1...89....5
1..2.4....56....3...3......4...2......7.....6....48......9.........1..2...86....5
1..2.4....56....3...3......4...2......7.....8....49......7.........1..2...89....5
1..2.4....56....3...7......8...5......4.....1....93......8.........7..5...26....4
1..2.4....56....7...8......2...6......3.....9....51......1.........8..5...93....2
1..2.4....56....7...8......2...6......3.....9....51......3.........8..5...91....6
1..23.....45....1...6......3...5......7.....8....21......8.........1..3...96....7
1..23.....45....6...7......2...4......6.....7....75......6.........2..3...81....5
1..23.....54....1...6......3...1......7.....8....25......8.........4..2...96....7
1..23.....54....1...6......3...1......7.....8....52......8.........2..3...96....7
1..23.....54....1...6......3...1......7.....8....52......8.........2..5...96....7
1..23.....54....2...6......3...2......7.....8....15......4.........9..1...87....6
1..23.....54....2...6......3...2......7.....8....15......6.........9..1...87....4
1..23.....54....3...6......2...7......5.....6....83......1.........2..7...95....4
1..23.....56....1...4......2...5......7.....8....18......3.........7..5...84....6
1..23.....56....1...4......3...5......7.....8....21......4.........6..5...97....3
1..23.....56....2...4......3...2......7.....8....15......6.........4..1...87....9
1..23.....56....2...4......3...2......7.....8....15......9.........4..1...87....6
1..23.....56....3...4......2...7......8.....9....53......1.........4..2...76....4
1..23.....56....4...2......3...1......4.....7....83......7.........2..8...96....1
1..23.....56....4...2......3...1......4.....7....83......7.........5..8...96....1
1..234.....5....4...2......6...4......7.....8....91......1.........6..1...87....5
1..234.....5....4...6......3...4......7.....8....98......5.........1..3...87....6
1..234....5.....6...7......8...6......9.....2....15......7.........8..5...24....9
1..234....5.....6...7......8...6......9.....2....51......7.........8..5...24....9
1..234....5.....6...7......8...7......4.....1....59......6.........9..5...28....4
1..234....56........3......4...1......7.....6....48......3.........2..1...89....5
1..234....56........8......2...4......5.....6....81......1.........2..1...76....5
1..234....56....1...4......3...1......7.....8.....5......9.........5..3...87....4
1..234....56....1...4......3...5......7.....8.....1......9.........1..3...87....4
1..234....56....1...4......3...5......7.....8....21......7.........1..3...8.....4
1..234....56....1...4......3...6......7.....8.....1......9.........5..3...87....4
1..234....56....1...4......6...1......7.....8.....5......6.........2..5...98....4
1..234....56....1...7......2...1......3.....8....25......7............2...98....4
1..234....56....1...7......2...1......8.....4....65......9.........2..5...4.....8
1..234....56....1...7......2...6......8.....4....15......8.........2..5...4.....9
1..234....56....1...7......2...6......8.....4....15......9.........2..5...4.....8
1..234....56....1...7......2...7......8.....4....1.......9.........2..5...45....8
1..234....56....1...7......3...4......2.....6.....5......7.........2..3...86....5
1..234....56....1...7......3...4......2.....6.....5......7.........2..8...96....5
1..234....56....1...7......3...4......2.....7....13......8.........7..4...8.....6
1..234....56....1...7......3...4......2.....7....13......8.........7..4...9.....6
1..234....56....1...7......3...4......2.....7....13......8.........9..4...8.....6
1..234....56....1...7......3...4......2.....7....13......8.........9..4...9.....6
1..234....56....1...7......3...4......8.....2....51......7.........6..4...2.....9
1..234....56....1...7......3...5......2.....8.....3......8.........1..5...47....9
1..234....56....1...7......3...5......8.....2....41................6..5...27....9
1..234....56....1...7......3...6......2.....8.....1......7.........5..3...48....9
1..234....56....1...7......3...6......8.....2.....1......7.........5..3...24....9
1..234....56....1...7......3...6......8.....2.....1......7.........5..3...28....9
1..234....56....1...7......3...6......8.....9.....1......7.........5..3...49....8
1..234....56....1...7......3...6......8.....9.....1......9.........5..3...47....8
1..234....56....1...7......4...5......2.....3.....1......7.........8..5...83....6
1..234....56....1...7......4...5......2.....8....71......3.........1..5...8.....2
1..234....56....1...7......4...6......8.....2....13................4..3...27....9
1..234....56....1...7......5...1......8.....9.....5......7.........5..3...49....2
1..234....56....1...7......6...7......8.....2....43................1..3...25....8
1..234....56....1...7......6...7......8.....2....43................1..4...25....8
1..234....56....1...7......7...6......8.....2....43................1..3...25....8
1..234....56....1...7......7...6......8.....2....43................1..4...25....8
1..234....56....1...7......8...6......9.....2....43................1..3...25....9
1..234....56....1...7......8...6......9.....2....43................1..4...25....9
1..234....56....1...7......8...7......9.....2....43................1..3...25....9
1..234....56....1...7......8...7......9.....2....43................1..4...25....9
1..234....56....2...7......3...2......1.....8....53......7............5...98....4
1..234....56....2...7......3...5......1.....8....23......7............5...91....4
1..234....56....3...7......2...4......3.....5.....7......3.........2..1...89....6
1..234....56....3...7......2...4......8.....6.....9......3.........2..1...56....7
1..234....56....3...7......2...4......8.....7.....5......3.........2..1...57....6
1..234....56....3...7......2...8......9.....5....43................1..4...56....7
1..234....56....4...2......3...4......7.....8....5.......8.........1..3...97....6
1..234....56....4...2......3...5......7.....6....4.......6.........1..3...87....9
1..234....56....4...7......2...6......1.....7....53......7.........2..3...8.....1
1..234....56....4...7......2...8......9.....5....43................1..3...56....7
1..234....56....4...7......3..........2.....7....48......7.........1..3...89....5
1..234....56....4...7......3..........2.....7....48......7.........1..3...89....6
1..234....56....4...7......3..........2.....7....48......9.........1..3...87....5
1..234....56....4...7......3..........2.....8....49......6.........1..3...98....2
1..234....56....4...7......3...4......2.....6.....7......5.........1..3...86....7
1..234....56....4...7......3...4......2.....6.....7......5.........1..3...86....9
1..234....56....4...7......3...6......8.....7....4.......7.........1..3...58....6
1..234....56....7...2......3...1......7.....2....48................8..1...35....6
1..234....56....7...2......3...1......7.....2....48................8..1...35....7
1..234....56....7...2......3...1......7.....6....48................8..1...36....2
1..234....56....7...2......3...4......7.....2....18................8..4...35....6
1..234....56....7...2......3...4......7.....2....18................8..4...35....7
1..234....56....7...2......3...4......7.....2....81................1..4...35....6
1..234....56....7...2......3...4......7.....2....81................1..4...35....7
1..234....56....7...2......3...4......7.....5....18................6..4...95....6
1..234....56....7...2......3...4......7.....5....18................7..4...95....6
1..234....56....7...2......3...4......7.....6....18................8..4...36....2
1..234....56....7...2......3...4......7.....6....81................1..4...36....2
1..234....56....7...2......4..........7.....6....18......6.........4..1...95....2
1..234....56....7...2......4...8......8.....2....53................1..3...74....6
1..234....56....7...3......2..........8.....5....46......1.........2..1...73....6
1..234....56....7...4......2..........8.....5....63......1.........2..1...74....6
1..234....56....7...4......2...4......8.....4....53................1..3...76....8
1..234....56....7...4......2...8......9.....5....13......6.........2..3...5.....4
1..234....56....7...4......3...8......7.....6.....1......3.........2..1...96....5
1..234....56....7...4......7...5......1.....4.....7......4.........8..5...91....6
1..234....56....7...8......2...4......5.....6....8.......1.........2..1...76....5
1..234....56....7...8......2...6......1.....4....53......7.........2..3...9.....1
1..234....56....7...8......2...7......1.....4....53......6.........2..3...9.....1
1..234....56....7...8......2...7......1.....4....53......9.........2..3...4.....8
1..234....56....7...8......2...7......9.....4....53......9.........2..3...4.....8
1..234....56....7...8......3...4......2.....5....83................1..4...59....6
1..234....56....7...8......3...4......2.....5....83................1..4...97....8
1..234....56....7...8......3...4......2.....5....93................1..4...97....8
1..234....56....7...8......3...4......2.....6....73................1..4...79....8
1..234....56....7...8......3...4......2.....6....93................1..4...97....8
1..234....56....7...8......3...4......5.....6....83................1..4...76....5
1..234....56....7...8......3...8......2.....5....43................1..4...59....6
1..234....56....7...8......3...8......2.....5....43................1..4...59....8
1..234....56....7...8......4...1......2.....6.....9......5.........4..1...76....8
1..234....56....7...8......4...7......7.....2....53......9.........4..3...2.....1
1..234....56....7...8......4...7......9.....2....53......8.........4..3...2.....1
1..234....56....7...8......4...8......2.....5....43................1..3...59....6
1..234....56....7...8......4...8......2.....5....43................1..3...59....8

These were all minimal - so there were no 18C puzzles
This means we have 190 invalid [with no puzzles] 18C patterns [20/2 x 19]

I took one of these [supposedly] invalid 18C patterns and by adding one clue found an example 19C puzzle in all but 2 of the 63 patterns with 19C.
I would guess that using one of the 19C invalid patterns you could easily find all 20C examples ...
Code: Select all
1..234....23....5...6......4...1......5.....6....47......5.........6..1...73....8-20C example
...xxx....xx....x...x......x...x......x.....x.....x......x.........x..x...xx....x-18

...134....56....7...4......7...5......2.....4.....7......2.........8..5...94...86
...134....56....7...4......7...5......2.....4.....7......2.........8..5...94..3.6
...234....15....7...9......2...4......8.....9.....1......9.........2..6...73.8..1
...234....56....4...7......2...4......8.....1.....1......6.........2..5...195...8
...234....56....7...9......3...4......2.....1.....6......1.........5..3..918....6
...832....56....7...4......8...5......1.....9.....7......9.........8..5.7.93....6
...231....56....4...9......2...4......3.....1.....5......9.........2..53..18....7
...134....62....5...7......3...6......1.....8.....2......7.........5.63...48....9
...254....36....4...7......2...4......8.....1.....1......6.........27.3...13....9
...234....19....3...4......2...5......1.....9.....8......9........32..5...86....1**** only one of these found
...138....29....4...6......3...4......7.....8.....9......2.......1.5..9...83....5
...234....56....4...7......3...4......9.....1.....1......9......7..5..3...18....2
...234....56....4...7......3...4......8.....9.....1......8.....5...7..3...19....8
...234....56....4...7......3...4......8.....9.....1......7....3....6..5...19....8
...134....57....2...9......3...4......8.....1.....7......9...4.....2..3...18....7
...134....57....2...9......3...4......8.....1.....7......9..5......2..3...18....7
...124....56....1...7......4...6......8.....3.....5......8.1.......4..6...37....2
...236....19....6...4......3...6......7.....5.....9......58........1..3...57....2
...134....56....2...7......3...5......9.....8.....2.....87.........9..5...48....9
...234....56....4...7......4...6......2.....1.....5....1.7.........4..6...91....2
...234....56....4...7......2...4......8.....1.....1...5..6.........2..5...19....8
...123....54....2...7......3...4......8.....1.....2..9...7.........5..3...18....5
...123....56....7...4......7...5......2.....4.....7.9....2.........8..5...94....6
...124....56....4...3......4...6......8.....1.....59.....9.........4..6...18....7
...124....56....4...7......4...6......8.....3....35......8.........4..6...39....7
...234....57....4...9......2...4......8.....1...6.7......9.........2..5...18....7
...138....56....4...9......3...4......8.....1..4..2......9.........5..3...18....2
...234....56....4...7......2...4......8.....1.7...1......9.........2..5...15....8
...134....56....2...7......2...4......1.....63....5......7.........1..3...96....5
...234....56....4...7......2...4......8....91.....1......6.........2..3...19....7
...124....56....1...7......1...6......8...9.3.....5......8.........1..6...39....2
...234....56....4...7......3...4......1..7..8.....1......6.........5..3...98....7
...234....56....4...7......2...4......8.9...1.....1......6.........2..5...19....8
...238....56....7...4......8...5......26....4.....7......4.........8..3...91....6
...234....56....4...7......4...6.....78.....9.....5......7.........4..6...18....3
...234....56....4...7......6...4....3.8.....1.....1......5.........2..3...18....9
...134....56....4...7......3...4...8..9.....1.....2......8.........5..3...89....2
...124....56....7...4......7...5..2...3.....4.....7......3.........8..5...94....6
...124....56....7...4......1...5.8....2.....4.....7......4.........8..5...93....6
...234....16....4...7......2...47.....8.....9.....5......6.........2..3...59....8
...231....87....5...9......2..45......8.....9.....7......9.........2..3...13....8

...xxx....xx....x...x......x.x.x......x.....x.....x......x.........x..x...xx....x  no puzzle found

...134....56....7...2......73..6......8.....1.....5......8.........4..6...19....2
...234....56....4...7.....12...4......8.....9.....1......9.........2..3...16....8
...234....56....4...7....8.3...4......8.....9.....1......8.........7..3...19....2
...234....56....4...7...2..3...4......8.....9.....1......9.........2..3...16....8
...234....56....4...7..5...2...4......8.....1.....1......6.........2..5...19....8
...234....56....4...7.8....3...4......8.....1.....1......6.........2..3...18....7
...234....56....4...78.....2...4......8.....9.....1......1.........2..3...19....8

...xxx....xx....x..xx......x...x......x.....x.....x......x.........x..x...xx....x  no puzzle found

...234....56....7.9.4......7...5......1.....4.....7......4.........8..5...91....6
...234....59....41..7......2...4......5.....9.....1......9.........2..3...16....5
...234....56...84...7......3...4......8.....1.....1......6.........2..3...18....7
...234....56..7.4...7......4...6......8.....1.....5......8.........4..6...19....7
...234....56.7..4...7......2...4......8.....1.....1......6.........2..5...19....8
...234....568...4...7......2...4......8.....7.....1......6.........2..3...97....1
...234...195....4...2......4...5......3.....7.....1......3.........4..5...87....6
...634..9.58....7...4......3...5......7.....4.....6......9.........8..5...21....6
...134.9..56....7...4......7...5......2.....4.....7......2.........8..5...94....6
...7342...56....4...7......3...4......8.....1.....1......8.........2..3...16....5
..9837....46....1...5......1...6......7.....8.....3......5.........1..4...87....2
.3.214....56....4...7......2...4......8.....7.....5......7.........2..1...58....6
2..134....56....2...7......3...4......1.....6.....5......7.........1..3...86....5
---------------------------------------------------------------------------------


Maybe someone can find a puzzle for those 2 pattern !! ?

The fact that there were no valid 18C patterns goes some way to explain why there are many more invalid 18C patterns than could be excluded with the magic 40 templates...
coloin
 
Posts: 2515
Joined: 05 May 2005
Location: Devon

Next

Return to General