Hi Marek
Welcome on this forum
Because you're new here, your post took some time before being visible.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 1239 4 1239 ! 1367 1237 236 ! 1259 1258 5689 !
! 5 12 6 ! 9 124 8 ! 124 7 3 !
! 1239 8 7 ! 1346 5 2346 ! 1249 12 469 !
+-------------------+-------------------+-------------------+
! 1278 6 1258 ! 158 12 9 ! 2457 3 457 !
! 1237 125 4 ! 135 6 235 ! 8 9 57 !
! 238 9 2358 ! 3458 234 7 ! 6 25 1 !
+-------------------+-------------------+-------------------+
! 1246 125 125 ! 34567 9 3456 ! 1357 158 578 !
! 169 7 159 ! 2 8 356 ! 1359 4 59 !
! 489 3 589 ! 457 47 1 ! 579 6 2 !
+-------------------+-------------------+-------------------+
There is a solution in W6, with nothing noticeable: Show x-wing-in-columns: n3{c3 c5}{r1 r6} ==> r6c4 ≠ 3, r6c1 ≠ 3, r1c6 ≠ 3, r1c4 ≠ 3, r1c1 ≠ 3
finned-x-wing-in-columns: n5{c2 c6}{r5 r7} ==> r7c4 ≠ 5
biv-chain[4]: r4c5{n1 n2} - b6n2{r4c7 r6c8} - r6c1{n2 n8} - b5n8{r6c4 r4c4} ==> r4c4 ≠ 1
biv-chain[4]: c1n7{r4 r5} - r5c9{n7 n5} - r6c8{n5 n2} - r6c1{n2 n8} ==> r4c1 ≠ 8
whip[4]: c7n3{r7 r8} - b9n1{r8c7 r7c8} - r7c2{n1 n2} - r7c3{n2 .} ==> r7c7 ≠ 5
whip[4]: r9c5{n4 n7} - r9c4{n7 n5} - r4c4{n5 n8} - r6c4{n8 .} ==> r7c4 ≠ 4
t-whip[5]: c6n4{r3 r7} - r9c5{n4 n7} - r9c4{n7 n5} - r4c4{n5 n8} - r6c4{n8 .} ==> r3c4 ≠ 4
t-whip[5]: r5c9{n7 n5} - c2n5{r5 r7} - c8n5{r7 r1} - r1n8{c8 c9} - r7c9{n8 .} ==> r4c9 ≠ 7
z-chain[6]: c2n5{r7 r5} - r6n5{c3 c4} - c4n4{r6 r9} - r9c5{n4 n7} - r9c7{n7 n9} - r8c9{n9 .} ==> r7c8 ≠ 5
biv-chain[4]: c9n6{r3 r1} - b3n8{r1c9 r1c8} - c8n5{r1 r6} - r4c9{n5 n4} ==> r3c9 ≠ 4
hidden-single-in-a-column ==> r4c9 = 4
whip[6]: r7n4{c6 c1} - r7n6{c1 c4} - r7n3{c4 c7} - r7n7{c7 c9} - r5c9{n7 n5} - c2n5{r5 .} ==> r7c6 ≠ 5
finned-x-wing-in-columns: n5{c6 c2}{r5 r8} ==> r8c3 ≠ 5
biv-chain[4]: r8c3{n1 n9} - r8c9{n9 n5} - c6n5{r8 r5} - c2n5{r5 r7} ==> r7c2 ≠ 1
finned-x-wing-in-columns: n1{c2 c4}{r5 r2} ==> r2c5 ≠ 1
biv-chain[3]: r1c6{n6 n2} - r2c5{n2 n4} - c6n4{r3 r7} ==> r7c6 ≠ 6
biv-chain[3]: r7n6{c4 c1} - c1n4{r7 r9} - r9c5{n4 n7} ==> r7c4 ≠ 7
whip[1]: r7n7{c9 .} ==> r9c7 ≠ 7
naked-pairs-in-a-block: b9{r8c9 r9c7}{n5 n9} ==> r8c7 ≠ 9, r8c7 ≠ 5, r7c9 ≠ 5
whip[1]: r7n5{c3 .} ==> r9c3 ≠ 5
biv-chain[3]: c4n7{r1 r9} - b8n5{r9c4 r8c6} - b8n6{r8c6 r7c4} ==> r1c4 ≠ 6
z-chain[3]: b8n3{r8c6 r7c4} - b8n6{r7c4 r8c6} - c6n5{r8 .} ==> r5c6 ≠ 3
biv-chain[3]: c1n7{r4 r5} - r5n3{c1 c4} - b5n1{r5c4 r4c5} ==> r4c1 ≠ 1
biv-chain[4]: c6n5{r8 r5} - r5c9{n5 n7} - c7n7{r4 r7} - b9n3{r7c7 r8c7} ==> r8c6 ≠ 3
hidden-single-in-a-row ==> r8c7 = 3
whip[1]: r8n1{c3 .} ==> r7c1 ≠ 1, r7c3 ≠ 1
naked-pairs-in-a-block: b7{r7c2 r7c3}{n2 n5} ==> r7c1 ≠ 2
hidden-pairs-in-a-column: c6{n3 n4}{r3 r7} ==> r3c6 ≠ 6, r3c6 ≠ 2
biv-chain[3]: r8c9{n9 n5} - r8c6{n5 n6} - r1n6{c6 c9} ==> r1c9 ≠ 9
biv-chain[3]: c5n3{r6 r1} - r3c6{n3 n4} - r2c5{n4 n2} ==> r6c5 ≠ 2
biv-chain[3]: b5n2{r5c6 r4c5} - b5n1{r4c5 r5c4} - r5n3{c4 c1} ==> r5c1 ≠ 2
biv-chain[4]: r4c1{n2 n7} - c7n7{r4 r7} - r7n1{c7 c8} - r3c8{n1 n2} ==> r3c1 ≠ 2
whip[1]: r3n2{c8 .} ==> r1c7 ≠ 2, r1c8 ≠ 2, r2c7 ≠ 2
finned-x-wing-in-rows: n2{r2 r5}{c2 c5} ==> r4c5 ≠ 2
stte
I haven't found any 1-step solution.
After initial Singles and whips[1], there's only one W1-anti-backdoor (n8r4c4), which would ensure a single-step solution (counting as 0-step any Single or whip[1]).
But it can't be eliminated by any whip, g-whip, braid or g-braid of any length.
This doesn't imply there couldn't be a 1-step solution with a pattern that would eliminate several candidates at once.
I'm very curious to see your 1-step solution.
[Edit:] Indeed, I have a 1-step solution, but a very dirty one:
FORCING[3]-T&E(S) applied to trivalue candidates n4r9c1, n8r9c1 and n9r9c1 :
===> 16 values decided in the three cases: n7r9c5 n8r7c9 n1r7c8 n3r8c7 n7r7c7 n2r3c8 n5r6c8 n8r1c8 n4r3c6 n3r3c1 n8r6c4 n2r6c1 n4r6c5 n3r6c3 n1r8c3 n3r1c5
===> 79 candidates eliminated in the three cases: n2r1c1 n1r1c3 n3r1c3 n6r1c4 n1r1c5 n2r1c5 n7r1c5 n2r1c7 n9r1c7 n1r1c8 n2r1c8 n5r1c8 n8r1c9 n9r1c9 n1r2c5 n4r2c5 n2r2c7 n1r3c1 n2r3c1 n9r3c1 n3r3c4 n4r3c4 n2r3c6 n3r3c6 n6r3c6 n2r3c7 n4r3c7 n1r3c8 n4r3c9 n1r4c1 n2r4c1 n1r4c3 n2r4c3 n1r4c4 n8r4c4 n5r4c7 n7r4c7 n5r4c9 n2r5c1 n3r5c1 n2r5c2 n1r5c4 n5r5c6 n5r5c9 n8r6c1 n2r6c3 n5r6c3 n8r6c3 n4r6c4 n5r6c4 n2r6c5 n3r6c5 n2r6c8 n1r7c1 n2r7c1 n1r7c2 n1r7c3 n5r7c4 n7r7c4 n4r7c6 n5r7c6 n1r7c7 n3r7c7 n5r7c7 n5r7c8 n8r7c8 n5r7c9 n7r7c9 n1r8c1 n5r8c3 n9r8c3 n3r8c6 n1r8c7 n5r8c7 n9r8c7 n5r9c3 n7r9c4 n4r9c5 n7r9c7
stte
As you can see, n8r4c4 is among the candidates eliminated, so that it should be possible to find some kind of Forcing-S-braid (or skyscraper) based on r9c1{n4 n8 n9) that is simpler than the above Forcing-T&E and that eliminates it.